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Abstract

This work employs WGANs to generate calorimetric data that will be on high1

demand in the event of the CMS Phase II Upgrade. The generated samples resemble2

the real ones from physics-based simulations; the particle showers are especially3

well-reproduced longitudinally along the calorimeter. The performance of the4

model is evaluated using the Wasserstein distance between the real and generated5

distribution of energy projected in each dimension of the calorimeter.6

1 Motivation7

In High Energy Physics (HEP) collider experiments, detectors register the outcome of particle8

collisions. In the reconstruction of collision events, the particle traces left in the detector are analyzed,9

for example, to identify the particle type and estimate its energy. The highly granular calorimeter10

(HGCAL) will be one of the greatest novelties of the Compact Muon Solenoid (CMS) Phase II11

upgrade. After the upgrade, there will be four times more particle interactions in the collider,12

introducing a new demand for large and accurate simulation samples; such simulations then become13

even more computationally expensive and will hardly be able to supply all the demand given the14

resource constraints of the experiment.15

Deep generative models offer a possibility to speed up the data generation compared to simulations.16

This work uses Wasserstein Generative Adversarial Networks (WGANs) [1] as an alternative to17

supply the high demand for fast simulation for the HGCAL.18

GANs have been applied to calorimeter simulation problems in HEP, such as in the CaloGAN19

[4] architecture for ATLAS’ electromagnetic calorimeter; in the Linear Collider Detector’s three-20

dimensional calorimeter [2]; and WGANs have been applied to calorimeter data from CERN’s Super21

Proton Synchrotron test beam [3]. Thus being a promising direction to explore.22

2 Data and model23

This work considers a three-dimensional calorimeter of hexagonal-shaped cells, receiving particles24

from varied incoming angles; this angle variation originates realistic events and diverse samples. The25

dataset consists of Monte Carlo simulations of electron showers generated with the Geant4 software,26

containing 150,000 events with energies ranging from 0 to 500 GeV.27

The model architecture adapts the Deep Convolutional GAN to fit the dimensions of the data, using28

two-dimensional convolutions. The calorimetric data can be seen as a 3D image, and the sensors29

resemble voxels, convolutional layers are suitable to model spatial correlations.30

The data generation is conditioned on the energy of the particle. For such, the normalized energy31

value is sampled from a normal distribution that represents the energy distribution of the real data,32
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Figure 1: Evaluation metrics during training.

and this value is multiplied to the latent space vector of the generator. An additional task is added to33

the critical network: regression on the energy of the particle. The total loss function is weighted on34

this regression task, in addition to the WGAN loss.35

3 Results36

The generated samples obtained are similar to the real ones, but can overestimate the total energy37

of the particles. The energy deposition in each axis of the calorimeter reveals that the shower38

development along the calorimeter is well-reproduced accross the longitudinal layers. However, even39

though the energy deposition pattern on the cross section of the calorimeter is centralized, it still40

requires further improvement.41

To evaluate the model performance, the Wasserstein distance (WD) between the distribution of real42

and generated samples is computed for the projection of the energy distribution in each axis of the43

calorimeter. The evaluation metric is the average of the Wasserstein distance for each axis. The44

Kullback-Leibler (KL) divergence and Jensen-Shannon (JS) divergence are also computed for the45

same purposes, showing that the performance of the model was consistent regardless of the metric, as46

in Figure 1.47

This approach achieved a reasonable computational speedup: 1000 samples can be generated in less48

than a second using 10 CPU cores Skylake. The model trained for approximately 40 minutes in a49

V100 GPU. Nevertheless, the inference time of this model cannot yet be compared with the running50

time of physics-based simulations due to the different complexity of the events.51
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