
A genetic algorithm implementation for
spatio-temporal variogram modelling to determine
air quality monitoring network representativeness

Abstract

One way to improve air quality index estimations is through monitoring network
optimization, i.e. determination of optimal sitting criteria and the number of
monitoring stations to be included in the network. In this work, we used a genetic
algorithm based strategy for parameter search to obtain the best fitted variogram
model for air contaminants. This variogram is then used to define a coverage area -
representativeness - of the monitoring network for each air pollutant in the Valley
of Mexico Metropolitan Area.

1 Introduction

To better estimate population exposure to air pollution and its health effects is necessary to collect
reliable data from air monitoring networks. Thus, decision making in public health policy will relay
on how accurate measurements are done. Improvement in exposure assessment can be done by
establishing an optimal sitting criteria and the number of monitory stations necessary in that network.
Spatial representativeness is defined as the area containing just correlated sample measurements
[1]. The same idea is used to define temporal representativeness, i.e. the amount of time that
measurements show correlation. We propose the use of the variogram to estimate spatial and temporal
representativeness of an air quality monitoring network as the joint areas of individual monitoring
stations. In Geostatistical procedures such as spatial interpolation, genetic algorithms (GA) have been
implemented as parameter search strategy. In particular, using ordinary Kriging interpolation method
for ground water hydrology, GA have proven to be more efficient than traditional and heuristic
parameter selection [2]. Thus, in this work, we applied a GA-based strategy for variogram parameter
search using publicly available information on air contaminants.

2 Materials and methods

Air pollutant data from the Air Quality monitoring network located throughout the Valley of Mexico
Metropolitan Area (VMMA) was downloaded using the [R] package ’aire.zmvm’. Information was
available for carbon monoxide (CO), ozone (O3), nitrogen oxide (NO), nitrogen oxides (NOX ),
sulphur dioxide (SO2), particulate matter PM2.5, PM10 and coarse particles PMCO. A genetic
algorithm was used to find the best variogram model to fit the data, where the chromosome was
implemented by the combination of covariance structure (metric, separable, productSum, sumMetric
and simpleSumMetric) and spatio-temporal variance models (Exponential, Gaussian and Spheric)
with the corresponding parameters (nugget, sill and range). The fitness function was the minimal
wRMSE over the proposed semivariogram chromosome.

3 Results

By optimizing search parameters for the covariance structure, variogram model and its initial values,
we were able to determine the best fitted variogram per contaminant. The range parameter from each
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pollutant, which indicates the correlation length is depicted in Figure 1. Panel A) shows the spatial
correlation range while panel B) the temporal component.
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Figure 1: Range parameters for each contaminant. A) Spatial correlation range (km). NO and NOX

have the highest values while SO2 the smallest. B) Temporal correlation range (days). The largest
values correspond to PM10 and NOX and the lowest to CO.

The representativeness area calculated for individual stations, was obtained from the spatial corre-
lation lengths. The combinations of these areas stands for the representativeness area of the whole
monitoring network.
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Figure 2: Representativeness area for A) sulphur dioxide SO2 and B) particulate matter PM2.5. The
covered area is obtained by joining those of the individual monitoring stations.

4 Conclusion

As in previous reports, representativeness area is shown as pollutant geography - dependant. Here,
we have implemented a GA to optimize parameter search space to construct the best spatio-temporal
variogram. With the correlation range obtained from this procedure, we were able to generate the
monitoring network covered area for each pollutant in the VMMA.
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