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1 Introduction1

Capturing game session information is usually done using replay files, which have the disadvantage2

of being proprietary binary files. In [Weber and Mateas, 2009, Robertson and Watson, 2014] we3

have examples of information capturing works from such replay files with specific solutions for the4

source games. In this context, data provenance is suggested as an alternative for representing game5

session information. Provenance refers to the documented history of an object’s life cycle[Group6

et al., 2005]. This documented history is structured in the form of provenance graphs. A provenance7

graph is an oriented, acyclic, causal graph enriched with annotations. Such a graph aims at mapping8

the flow of actions taken during an object’s life cycle and the produced results. There are three9

types of nodes in a provenance graph: Artifacts, Processes, and Agents. In the context of games,10

Artifacts represent inanimate objects (such as weapons and items), Processes represent actions (such11

as running, jumping, attacking), and Agents represent players, enemies, and non-playable characters.12

Game provenance was first conceived as the conceptual framework Ping and later implemented into13

the PinGU (Provenance in Games for Unity) plugin [Kohwalter et al., 2017, 2018]. The PingU plugin14

generates an XML file containing a provenance graph. Each node has a type according to the PinG15

framework and the game developer-defined attribute data.16

Initially developed as a game analytics tool, since viewing the documented story through the enriched17

annotated graph could help to identify game design flaws and enhance the player experience, game18

provenance is also a strong candidate for machine learning applications. The large amount of19

information associated with each graph element (nodes and edges), which in turn is generated in20

abundance over a game session, is the key feature of this data structure for machine learning.21

On the other hand, recent advances in the field of deep learning have been reflected in machine22

learning techniques applied to digital games relying on computer vision and reinforcement learning,23

and featuring high performance and generality[Volodymyr et al., 2013]. However, these techniques24

require a massive computational effort, since their training and validation steps are performed using25

deep networks fed by video and screen captures. Game provenance graphs, in turn, hold a wealth of26

information about the elements of a game and their relationships (interactions) that are not directly27

represented in videos or screenshots. Therefore, we believe that provenance graphs are useful for28

various machine learning tasks, not just for reinforcement learning and intelligent agent building.29

2 PingUMiL: Experiments and Results30

In the context of machine learning in graphs, we have devised a representation learning-based31

approach for dealing with game provenance graphs in the PingUMiL framework1. The idea behind32

this approach is to rely on vector representations to learn a mapping that encodes nodes, or (sub)graphs,33

1https://github.com/sidneyaraujomelo/PingUMiL
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as points in a vector space so that geometric relationships within that learned space reflect the structure34

in the original graph[Hamilton et al., 2017].35

Figure 1: Overview of the PingUMiL framework for a link prediction task.

We applied a convolution-based representation learning approach, which determines the embedding of36

the node according to the attributes of its neighborhood. These methods are also called neighborhood37

aggregation methods. As the results of our investigation, we implemented a framework for machine38

learning tasks on game provenance graphs and conducted experiments on two racing games prototypes39

and a multiplayer airplane battle arena game2. In the racing games, we performed a link prediction40

task and achieved high-performance values for the metrics of precision and recall (above 70%).41

Besides, we also investigated the effect of learning representations using graphs from both racing42

games, which led to enhancement on recall metrics for specific types of edges. In the airplane battle43

arena game, preliminary results on a node classification task across graphs from multiple sessions44

show high micro f1-score (above 90%) on determining the player responsible for each recorded45

action.46

3 Current Research47

From those previous findings, we noticed that one of the significant limitations for combining48

provenance graphs and machine learning is the lack of support for handling heterogeneity of nodes49

and edges. In the context of digital games, it is natural that nodes representing different entities50

(an item, a player, or an enemy) have completely different attribute vectors. For the aggregation51

approach mentioned previously, only [Veličković et al., 2018] supports heterogeneous nodes as input,52

generating vector representations oriented to the learning task performed. On the other hand, works53

such as [Weston et al., 2011] and [Chang et al., 2015] present approaches for learning representations54

of entirely distinct datasets (image and text, for example) by mapping their data points into the55

same vector space. For both approaches, learned representations depend on local neighborhood and56

explicitly determined relationships (instantiated as edges); in the game provenance graph, however,57

learned representations should reflect the role of a node in spite of its neighborhood. We also believe58

that successfully solving this challenge will facilitate the transfer learning across multiple games,59

which is necessary for data reuse since obtaining provenance data is not trivial and the amount of60

data depends on the number of played sessions.61

The general goal of the current research is to develop a machine learning-based framework for62

heterogeneous graphs based problems, such as game provenance graphs. To fully achieve this63

goal, we intend to develop graph network architectures[Battaglia et al., 2018] capable of handling64

the intrinsic heterogeneity of nodes and edges of provenance graphs and tackle prediction and65

classification tasks in edge, node and subgraph levels. To that, we are investigating not only graph-66

based deep learning approaches, but also the more general class of methods that combine neural67

networks and logical languages to learning and reasoning from relational data [Kazemi and Poole,68

2018, Manhaeve et al., 2018]. We aimed at designing graph-based machine learning techniques that69

are capable of adapting state-of-the-art performance models, such as relational deep reinforcement70

learning [Zambaldi et al., 2018] for heterogeneous graphs, using, for example, attention mechanisms.71

2A paper with the framework and its results is to be released in Elsevier’s Entertainment Computing journal.
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