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1 Introduction and Motivation

One of the most common assumptions in machine learning is that all examples used for training
and testing are independently and identically drawn from the same distribution (1). However, in
practical scenarios, this assumption can not be taken for granted as there might exist, for example,
variations between the conditions in which training and test data were collected (2). Previous work
attempted to enable machine learning models to compensate for the mismatch between training and
test data distributions under different assumptions. Particularly, in the domain adaptation setting,
one assumes that at training time an unlabeled sample from the test data distribution is available.
Theoretical results for this setting (3) have shown that under the covariate shift assumption, the error
on the target domain is bounded by the error on the source domain and theH-divergence (4) between
source and target distributions measured on a shared feature space. Methods based on this result
attempt to learn domain-invariant representations while preserving task-relevant cues (5). Recent
work (6; 7) leveraged deep neural networks effectiveness on learning useful representations so as
to learn a representation space where both task error and the divergence between source and target
domains are simultaneously minimized.

Despite the success presented by domain adaptation strategies in several tasks (8; 9), such techniques
rely on the assumption that an unlabeled sample from a target distribution of interest is known at
training time. In this work, we are interested in a more general setting where no samples from any
target distribution are available for training a model. This problem is known as domain generalization
and has recently drawn attention from the machine learning community. Previous work on domain
generalization proposed to use data augmentation (10) at training time, meta-learning to simulate
domain shift (11), adding a self-supervised task to encourage a feature extractor to learn better
representations (12), or learning domain-invariant representations (2). In this work, we tackle
domain generalization problems through building upon the domain adaptation results and previously
proposed methods, often based onH-divergence minimization. We show that, by minimizing pair-
wise divergences across a set of training source domains, the feature extractor is encouraged to learn
representations which are invariant across unseen target domains, under the assumption that samples
from any target domain can be drawn from a mixture of all source domains. We show that minimizing
an upper-bound on the pair-wiseH-divergence between source domains encourages the features to
be invariant to any target domain. In summary, our main contributions are: i) we revisit and extend
theoretical results from the domain adaptation literature to the domain generalization problem; ii) we
devise an algorithm based on these results to learn domain-invariant representations and evaluate it
on two domain generalization benchmarks.

2 Contribution and Experiments

Let D be a meta-distribution composed by distributions D denominated domains, i.e. while sampling
from D, one is actually sampling from one of the possible Di ∈ D. Further consider a training set
(xm, ym) ∼ D and a test set (x′m, y

′
m) ∼ D are constructed, and the set of domains that represented

in the training and test sets are referred to as source and target domains, respectively.
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Now let dH(DSi ,DSk ) denote theH-divergence between the i-th and k-th source domainsDSi andDSk ,
and dH(DSi ,DSk ) ≤ ε, ∀ i, k ∈ {1, . . . , NS}, where NS is the number of source domains, be the
maximum pair-wiseH-divergence between all source domains. We thus assume that all examples that
appear at test time can be explained by a mixture of the source domains, i.e. any target domain DTj
can be written as DTj (·) =

∑NS

i=1 πi,jDSi (·),
∑NS

i=1 πi,j = 1. Consequently dH(DTj ,DSi ) ≤ ε, ∀ i ∈
{1, . . . , NS}. Using the triangle inequality for theH-distance, we have that for any target domains
DTk and DTj , dH(DTk ,DTj ) ≤ dH(DTk ,DSi ) + dH(DSi ,DTj ) = ε + ε = 2ε. Therefore, given the
aforementioned assumptions, by minimizing the maximum pair-wiseH-divergence between source
domains, we are also minimizing theH-divergence between target domains. Taking such result into
account, we propose a method to learn representations by minimizing an empirical estimation of ε,
while attaining a good performance at the goal task. Our algorithm contains three main modules: a
feature extractor F with parameters φ, a task classifier T with parameters θT , and theH-divergence
estimators Dj with parameters θj , j ∈ {1, . . . , NS}.
As shown in (3), the H-divergence between two domains can be estimated by a discriminator
responsible for distinguishing samples from one domain and the other. In practice, this could be
implemented in different ways. For example, one could have an empiricalH-divergence estimator for
each pair of source domains and train the feature extractor to minimize the maximum values between
the estimates. However, if adopting this procedure, the number ofH-divergence estimators is O(n2),
where n is equal to NS . Another possibility is to have instead a model responsible to discriminate
examples from one source domain from all the others. This way, each discriminator is estimating an
average of the empirical H-divergence between one source domain and the remaining ones. As a
result, we have one domain discriminator per source domain, which corresponds to a O(n) number
ofH-divergence estimators. To avoid increasing the computational cost of our approach, we decided
to estimate ε using the second approach. Hence, the procedure for estimating φ, θT , and all θj’s can
be formulated as the following multiplayer minimax game:

min
φ,θT

max
θ1,...,θNS

LT (T (F (x;φ); θT ), yT )−
NS∑
j=1

Lj(Dj(F (x;φ); θj), yj), (1)

where LT (·) is the task-related loss, and each Lj(·) represents the binary cross-entropy loss for one-
versus-all domain classification, yT corresponds to the task label, and yj is equal to 1 in case x belongs
to the j-th source domain, or 0 otherwise. Intuitively, the feature extractor attempts to minimize
the task-specific module loss and minimize the estimatedH-divergence values by maximizing the
losses provided by the domain discriminators, while each domain discriminator aims at improving its
estimation of the empiricalH-divergence. We perform alternate updates on φ, θT and all θi’s.

To assess the quality of the learned representations using our proposed approach we perform experi-
ments on the PACS and VLCS domain generalization benchmarks and compare its performance with
two state-of-the-art methods, namely Epi-FCR (13) and JiGen (12). We also consider for comparison
two adversarial approaches CIDDG (11) and MMD-AAE (14). In addition, we report the performance
of a convolutional neural network trained using all source domains without any mechanism to enforce
domain generalization. This model is referred in the results as All Sources (AS). Each model was run
with three different initializations on a leave-one-domain-out validation. The average accuracy on the
test partition of the target domain is reported.

The PACS benchmark consists of images from 7 classes from four different source domains (Photo,
Art painting, Cartoon, and Sketch). In Table 1 we show the results and observe that our proposed
method achieves better average performance across all source domains than the compared methods.
The VLCS benchmark is composed by 5 overlapping classes from the VOC2007 (15), LabelMe (16),
Caltech-101 (17), and SUN (18) datasets. By observing the results presented in Table 2, we observe
that our approach outperformed the compared methods in almost all cases, and, overall, it obtained
better average accuracy across all domains.

Table 1: Results on the PACS benchmark.

Target CIDDG Epi-FCR JiGen AS Proposed
P 78.65 86.10 89.00 90.02 88.12
A 62.70 64.70 67.63 64.86 66.60
C 69.73 72.30 71.71 70.18 73.36
S 64.45 65.00 65.18 61.40 68.03

Average 68.88 72.00 73.38 71.61 74.02

Table 2: Results on the VLCS benchmark.

Target MMD-AAE Epi-FCR JiGen AS Proposed
V 67.70 67.10 70.62 73.44 71.14
L 62.60 64.30 60.90 60.44 67.63
C 94.40 94.10 96.93 97.88 95.52
S 64.40 65.90 64.30 67.92 69.37

Average 72.28 72.90 73.19 74.92 75.92
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