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Abstract

As applications of quadrotors increase, the development of robust and reliable1

algorithms to control quadrotors are becoming more meaningful. In this work, we2

deal with the problem of losing one rotor in the quadrotor. Previous works rely3

on modeling the complex dynamics of quadrotor and apply some of the existing4

modern control techniques. In this work we propose to solve this problem using5

a model-based reinforcement learning framework in conjunction with a meta-6

learning approach, our main aim is to study solutions of complex dynamics and7

fast adaptation in challenging robot tasks such as flying a quadrotor only using8

three rotors.9

1 Introduction10

Quadrotors are underactuated robots, that use four propellers to fly. Their applications have increased11

due to their useful features such as versatile displacement, reduction of time costs, ease of use,12

to name a few. While Hexacopters and Octacopters are more stable and robust to perturbations,13

quadrotors have higher efficiency and maneuverability concerning to their counterparts. However14

one of the most important disadvantages of quadrotors is that the system becomes highly unstable if15

one of the rotors fails.16

Flying of quadrotors with only three propellers represents a challenging task since the system is17

really unstable, usual solutions sacrifice one degree of freedom (vertical axis) spinning-up at a certain18

angular velocity in the yaw axis [1], [2], [3], [4]. So these solutions require high knowledge in19

modeling robots and designing appropriate controllers, in contrast, our method learns unknown and20

complex behaviors to solve this task directly from sensor input.21

2 Related Work22

Currently, existing techniques deal with this problem by explicitly calculating the dynamics of the23

system and relying on this, to calculate the controllers using optimal control techniques. In [1] and24

[2] a quadrotor is modeled taking into account a specific failed rotor i.e. 3 rotors mechanism, this25

means that a different controller must be implemented for each possible failed rotor. In [5] goes an26

step further providing a method for planning a safe landing using a (rapidly-exploring random tree)27

RRT algorithm. Our method make adaptations online and just based of a set of previous states, while28

the methods mentioned before needs an extra module that must provide a Fault Detection [6], [7], [8],29

Recent advances in model-based reinforcement learning shows that these methods can achieve good30

results in simulated complex tasks [9], [10] or real robots tasks [11]. To the best of our knowledge31

there are few works that uses model-based reinforcement learning for teaching a quadrotor. In [12]32

a low level model-based RL is designed, however this method just tackle the hovering problem,33

needing an extra module to control the position.34
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In [13], a model-based RL is combined with a meta-learning process [14], shown fast adaptation in35

the Mujoco setting and in a real legged-robot. We take [13] as a base for our proposed of research,36

however the adaptation and the designing of a model-based method in the quadrotor setting is more37

challenging as is shown in [12] where the maximum hovering time was of six seconds, thus this38

method is not comparable to a simpler proportional–integral–derivative (PID) controller even in39

fault-free case.40

3 Approach and Current Progress41

We use a model-based RL because is highly sampling efficient, i.e., it promotes a fast adaption [13].42

This model-based is constructed using a neural network (fθ) and is trained in a deterministic way. The43

network takes as input the concatenation of current state and action, giving as outputs, the difference44

between the next and current observation, as shown in the equation 1. We use a low computational45

cost model predictive control (MPC) to take optimal actions.46

st+1 = st + fθ(st, at) (1)

In order to control the position and hovering behavior, as observation space we use: the matrix47

of rotation, position, angular velocity and linear velocity, this kind of observation space was used48

successfully to train a model-free policy to controls a quadrotor [15].49

The reward function considers the euclidean distance between the target and current position. How-50

ever, we will perform an ablation study so as to also consider the roll and pitch quadratic penalization.51

By doing so, we encourage the hovering conditions due to those angles are near to zero in such52

conditions. A quadrotor uses four motors defined as M1,M2,M3,M4, in the meta-training process53

we define a task as randomly select a Mi rotor or select any (fault-free), and power off that rotor,54

where i is sampled uniformly from {1, 2, 3, 4}. By doing this, we train an optimal model that is able55

to generalize over the different dynamics of the quadrotor (fault-free, fault-case), providing a rapid56

adaptation [13].57

In order to develop a policy that is capable to fly the quadrotor in fault-free case and be able to adapt58

in case of rotor failure. One initial milestone is to develop a good policy with a model-based RL that59

is capable to fly the quadrotor in fault-free case. Thus, if the policy is unable to control the quadrotor60

in fault-free case, the policy will not be able to control the quadrotor in the fault case due to its more61

complex dynamics. In Figure 1 results of the milestone mentioned before is shown. The target point62

represented by the dashed curve (0, 0, 0), we can see two problems. First, despite the quadrotor try to63

fly around the target point, the curve of the fly is too sharp. Second, the policy can not maintain the64

quadrotor in around the desired point in the long term. We have some ideas to solve these problem,65

first, improve the reward function taking into account the penalization of roll and pitch angles as was66

mentioned before.67

Figure 1: Position of quadrotor over time in X (left), Y (center) and Z (right) axis. Plots was obtained
in fault-free case with the Model-based policy reinforcement learning
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