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1 Introduction and Motivation

Learning useful representations from high-dimensional data is one of the main goals of modern
machine learning. Neural networks have been shown to be able to efficiently learn such representations
without requiring specialized pre-processing of data under analysis. Remarkable results of methods
employing neural networks have been published tackling classical challenging problems. However,
learning useful lower dimensional features from data is generally a side effect of the solution of
a given task, e.g., while learning the decision surface of a classification problem, inner layers of
neural networks are shown to make salient cues of input data that are discriminable. Moreover,
in an unsupervised setting, bottleneck layers of Autoencoders, learned posteriors of Variational
Autoencoders or even the latent layer of Generative Adversarial Networks have all been shown to
embed useful properties of input samples that can be leveraged for use in other tasks.

Rather than employing a neural network to solve some task and hope learned features are useful
and transferable, approaches such as Siamese Networks (1) have been introduced with the aim at
explicitly learning an embedding model that results in a lower dimensional space where samples hold
relevant properties, such as class separability. Given class labels, training of the embedding model
aims to minimize or maximize some Lp norm of the difference between samples in the embedding
space depending on whether they belong to the same class or not. Follow-up work exploited and
extended this idea for several applications. In (2), authors proposed a triplet loss alternative to the
contrastive scheme proposed for Siamese Networks and showed resulting embeddings achieved high
performance when classifiers were trained on top of them. However, as argued in previous literature
(3), Euclidean spaces will not in general be suitable metric spaces for representing desired semantic
relations from given data. Authors thus introduced embedding computation on a hyperbolic space.
Inspired by that, rather than training the embedding model by minimizing/maximizing Euclidean
distances between anchor-positive and anchor-negative pairs or hand-designing suitable spaces for a
given dataset and desired properties of embeddings, we propose to learn a space by jointly training
the mapping model, responsible for mapping a given data sample to the embedding space, along
with another model serving as a distance/divergence in the learned space. Both models together,
parametrized by neural networks, define a metric-like space within which desired semantic relations
such as class separability are represented in terms of distance, which renders inference efficient.

2 Contribution and Results

ConsiderM : RD → Rd and D : Rd×Rd →]0, 1[ are deterministic functions that will be referred
to as mapping and distance models, respectively, since they will be parametrized by neural networks.
Data samples are such that x ∼ X ∈ RD, and z = M(x), with z ∈ Rd, represent embedded
data examples, given that D � d. Each data example can be further associated to a class label
y ∈ {1, ..., k}. Moreover, we define anchor/positive pairs of samples such that xap = {xa, xp} :
y(xa) = y(xp), as well as anchor/negative pairs xan = {xa, xn} : y(xa) 6= y(xn). We thus define
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the parameters ofM and D as θ and φ, respectively, which are determined through the minimization
of the following loss L:

θ, φ = argminL : L = −EXap log(D(M(xa),M(xp)))− EXan log(1−D(M(xa),M(xn))).
(1)

The joint training ofM and D resembles the setting of a Generative Adversarial Network, with the
difference that both models minimize the same loss rather than playing a min-max game. As such, this
approach can be shown to be equivalent to maximizing an approximate divergence (Jensen-Shannon
divergence in our case) between the joint distributions of anchor/positive and anchor/negative pairs
on the embedding space under assumptions on D. A proof of concept experiment as presented in
Figure 1 shows discriminable embeddings computed byM on the test partition of MNIST directly
on R2; no dimensionality reduction is applied to generate the plot.

Figure 1: MNIST embeddings on a 2-dimensional
space. Each color represents samples correspond-
ing to a digit from 0 to 9. Held out data was
employed.
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Figure 2: Illustration of the verification problem.
The goal is to classify trials as either target or
non-target meaning that claimed and test classes
match or not, respectively. Classes appearing at
time might differ from those used during training.

We evaluate the proposed approach on the verification problem, illustrated in Figure 2, which
corresponds to, given a trial containing two examples, deciding whether such examples belong to the
same class or not. The evaluation on the verification problem can be performed under the closed or
open set conditions, i.e. the label set at test time matches that of training data on the closed set case,
while new classes appear on test data for the open set setting. We evaluate the proposed approach on
both cases and in both image and speech tasks. Results in terms of equal error rate (EER) are reported
in Tables 1 for Cifar-10 (closed-set) and Mini-Imagenet (open-set), and in Table 2 for language
identification on the OLR language identification task (closed-set) (4) as well as on the VoxCeleb
speaker verification task (open-set) (5) in which case models are trained on VoxCeleb-2 train partition
and evaluated on the entire VoxCeleb-1 train data. In all cases, a list of trials is created by pairing all
examples in the test data. EER is a threshold independent performance metric for binary classification
consisting of the value of the false acceptance rate at the threshold in which it matches the false
rejection rate.

Evaluation is performed using the cosine similarity, a common scoring strategy within the verification
literature, as well as directly using the output of D as a score which we refer to as E2E in the tables.
In all considered cases, using the learned divergence as a score outperformed the cosine distance.

EER (%)

Cifar 10 Cosine 5.02
E2E 3.39

Mini-Imagenet Cosine 28.79
E2E 28.48

Table 1: Verification performance on the verifica-
tion task on object classification in terms of EER
(the lower the better).

EER (%)

OLR Cosine 4.74
E2E 3.70

VoxCeleb Cosine 7.22
E2E 5.87

Table 2: Verification performance on the verifi-
cation task on voice biometrics tasks in terms of
EER (the lower the better)
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