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Abstract

Employing deep neural networks as natural image priors to solve inverse problems1

either requires large amounts of data to sufficiently train expressive generative2

models or can succeed with no data via untrained neural networks. However, very3

few works have considered how to interpolate between these no- to high-data4

regimes. In particular, how can one use the availability of a small amount of data to5

one’s advantage in solving these inverse problems and can a system’s performance6

increase as the amount of data increases as well? In this work, we consider solving7

linear inverse problems when given a small number of examples of images that are8

drawn from the same distribution as the image of interest. Comparing to untrained9

neural networks that use no data, we show how one can pre-train a neural network10

with a few given examples to improve reconstruction results in compressed sensing.11

Our approach leads to improved reconstruction as the amount of available data12

increases and is on par with fully trained generative models, while requiring less13

than 1% of the data needed to train a generative model. The Latinx author helped14

develop the approach and conducted the experiments.15

1 Introduction16

We study the problem of recovering an image xxx0 ∈ Rn from m linear measurements of the form17

yyy0 = AAAxxx0 ∈ Rm whereAAA ∈ Rm×n is a known measurement operator and m 6 n. The problem’s18

difficulty is a result of its ill-posedness due to the underdetermined nature of the system. To resolve19

this ambiguity, many approaches enforce that the image must obey a natural image model or prior.20

One of the most successful image models from deep learning for inverse problems are generative21

models such as Generative Adversarial Networks (GANs) [5]. When enforced as a natural image22

prior, these models have achieved state-of-the-art results in problems such as compressed sensing23

[4, 9, 12, 17, 13], phase retrieval [8, 18, 14], and blind deconvolution [2]. However, these models24

require large amounts of data to train and suffer from a non-trivial representation error. On the25

opposite end of the data spectrum, recent works have shown that randomly initialiazed neural26

networks can act has natural image priors without any learning such as in [19, 11]. These works27

highlighted how convolutional networks exhibit an architectural bias towards natural images, lending28

themselves to be successful in a variety of problems [11, 10, 20, 15].29

Based on these two approaches, we would like to investigate how can one interpolate between these30

data regimes. We would like to develop an algorithm that 1) performs just as well as untrained neural31

networks with no data and 2) improves performance as the amount of provided data increases.32
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2 Low Shot Learning For Imaging Inverse Problems33

We consider the problem of recovering an image xxx0 ∈ Rn from linear measurements of the form34

yyy0 = AAAxxx0 ∈ Rm whereAAA ∈ Rm×n and m 6 n. We also assume that xxx0 is drawn from a particular35

data distribution D and that we are given a low number of examples drawn from the same distribution36

(low shots), i.e., examples xxxi ∼ D where i ∈ [S]. We propose using the range of a deep neural37

network as a natural image model. In particular, we model the xxx0 as the output of G(zzz;θθθ), where38

zzz ∈ Rk is a latent code and θθθ ∈ RP are the parameters of the neural network.39

Pre-training: Prior to solving the inverse problem, we propose to first pre-train the network using40

the low shots that are given by jointly learning its weights and latent space similarly to [3]. Given41

low shots {xxxi}Si=1, we aim to find latent codes {zzzi}Si=1 and parameters θθθ that solve42

θ̂θθ, ẑzz1, . . . , ẑzzS := argmin
θθθ,zzz1,...,zzzS

1

S

S∑
i=1

L(G(zzzi;θθθ),xxxi).

where L : Rn × Rn → R is a loss function. In our experiments, we investigate the use of an `2 loss43

and an estimate of the kernel Maximum Mean Discrepancy (MMD) [6].44

Solving the inverse problem: We solve the inverse problem via the image-adaptivity approach45

of [13]. Using the weights found via pre-training, we begin solving the inverse problem by first46

optimizing over the latent code space to minimize47

f(zzz,θθθ) := ‖AAAG(zzz;θθθ)− yyy0‖22 .
The intuition is that we want to first use the semantics regarding the data distribution learned via48

pre-training the network’s parameters. Once a solution ẑzz is found, we then refine our solution by49

minimizing f(zzz,θθθ) with respect to both θθθ and zzz with θ̂θθ and ẑzz as our initial iterates.50

3 Experimental Results51

We now consider solving inverse problems with our approach and compare to three different baselines:52

an untrained neural network, optimizing the latent space of a trained Wasserstein GAN (WGAN)53

[1, 7], and the image-adaptivity approach of [13] (IAGAN). Each method uses the same DCGAN54

architecture with a latent code dimension of 128. In each problem, the image of interest is from a55

hold-out test set from the CelebA dataset [16]. The WGAN was trained on a corpus of over 200, 00056

64× 64 RGB celebrity images and our low-shot models were trained on small subsets of this.57

Compressed Sensing: We want to recover an image xxx0 ∈ Rn from measurements of the form58

yyy0 = AAAxxx0 ∈ Rm where AAA ∈ Rm×n has i.i.d. N (0, 1) entries with m � n. We refer to amount59

of undersampling m
n as the compression ratio. We trained our models using the two different loss60

functions proposed in the previous section for various numbers of shots S ∈ [5, 10, 15, 25, 50, 100].61

The figure above compares the average PSNR for each method at various compression ratios over62

50 different test images and different loss functions. We note that as the number of shots increases,63

our method continues to improve and we see comparable performance between our method using64

an MMD loss and optimizing over the latent code space of a fully trained GAN. While we expect65

IAGAN to be superior due to being trained with over 200, 000 images, the MMD trained model’s66

performance with 100 images is comparable.67
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