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Thank you all for making this work
possible and visible!




Music Information Retrieval

, \ interdisciplinary science of retrieving
information from music

musicology, psychology, signal processing,
informatics, machine learning, computational
intelligence or some combination of these.
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Singing Voice Detection

Classify polyphonic audio segments as
singing/non-singing
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Approaches for M

Common approach

FEATURE ML
ENGINEERING MODEL PREDICTION




Approaches for M

Transfer learning approach

2]
Qo
&
DCNN - é Vol | PREDICTION
/M
2
8
""" Frozen
Weights

10



1

Mel Frequency Cef

Mel Frequency Cepstral

A handcrafted audio A Mean
. _ Std

representation feature e W A Median
. 1 o | asssatdent & Max

Delta (Mean/Std)
Delta 2 (Mean/Std)

commonly used for voice
related tasks MFCC




VGG-inspired acoustic model in Hershey et. al. (2017)
Trained on a preliminary version of YouTube-8M
Embeddings: 128-dimensional audio features extracted at 1Hz
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VGGish embeddi

A feature obtained from data -

VGGish embeddings

using deep learning which - ESEESRE e |
theoretically preserves - -
relevant information " :
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Quantitative: classification accuracy

Qualitative: musical content
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Target Sources: female singer, male singer,
vocalists, and choir

Dataset: MedleyDB multitrack
Features: VGGish embeddings and MFCC
Classifiers: SVM and Random Forest

Evaluation: quantitative and qualitative
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Preliminary Results




Quantitative Eval

Classification Accuracy on Validation Set with SVM
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Quantitative Eval

Classification Accuracy on Validation Set with Random Forest
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Qualitative
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Observations

Some sound sources are frequently present
when singing voice is active

Most confused: Piano and guitar with drums

Synthesizers are detected as singing voice
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VGGish features increase classification accuracy
by 8 points compared to MFCC

Future directions

Evaluate effect of more training data using VGGish features
Combine VGGish features with other features
Evaluate using cross validation
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Any questions?

Come to my poster!
shayenne.moura@usp.br
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