Singing Voice Detection Using VGGish Embeddings

Shayenne Moura, Marcelo Queiroz Computer Music Research Group - University of São Paulo (Brazil)

CNPq

Conselho Nacional de Desenvolvimento

LXAD

Acknowledgments

Thank you all for making this work possible and visible!

Científico e Tecnológico

MIR

Music Information Retrieval

interdisciplinary science of retrieving information from music

musicology, psychology, signal processing, informatics, machine learning, computational intelligence or some combination of these.

Singing Voice Detection

Classify polyphonic audio segments as singing/non-singing

Target Sources

1-

MEDLEYDB

HOME DESCRIPTION DOWNLOADS ACKNOWLEDGEME

Piano Right 🝸 🔤	I want have been been been been been been been be
Flute	
S M wv red	
Violin	
S M wv red	
Viola	
Bassoon	
waveform *	
dyn read 🔻	

MedleyDB: A Dataset of Multitrack Audio for Music Research

Welcome to the companion website for MedleyDB, a dataset of annotated, royalty-free multitrack recordings. MedleyDB was curated primarily to support research on melody extraction, addressing important shortcomings of existing collections. For each song we provide melody f0 annotations as well as instrument activations for evaluating automatic instrument recognition. The dataset is also useful for research on tasks that require access to the individual tracks of a song such as source separation and automatic mixing.

Audio representation

Time

8

Approaches for ML tasks with audio

Common approach

Approaches for ML tasks with audio

Transfer learning approach

Mel Frequency Cepstral Coefficients (MFCC)

A handcrafted audio representation feature commonly used for voice related tasks MFCC

VGGish network

VGG-inspired acoustic model in Hershey et. al. (2017)

- Trained on a preliminary version of YouTube-8M
- Embeddings: 128-dimensional audio features extracted at 1Hz

VGGish embeddings

A feature obtained from data using deep learning which theoretically preserves relevant information

Support Vector Machine

Random Forest

Target Sources: female singer, male singer, vocalists, and choir Dataset: MedleyDB multitrack Features: VGGish embeddings and MFCC Classifiers: SVM and Random Forest Evaluation: quantitative and qualitative

Preliminary Results

Quantitative Evaluation: VALIDATION

Classification Accuracy on Validation Set with SVM

Quantitative Evaluation: 10 SPLITS

Quantitative Evaluation:VALIDATION

Classification Accuracy on Validation Set with Random Forest

Quantitative Evaluation: TEST

Classification Accuracy on Test Set

Qualitative Evaluation

VGGish features increase classification accuracy by 8 points compared to MFCC

Future directions

- Combine VGGish features with other features
- Evaluate using cross validation

Thanks!

Any questions?

Come to my poster! shayenne.moura@usp.br

