1. Introduction

2. Real Non-Volume Preserving Voice Conversion

3. Initial Results

4. Conclusions
Introduction
Introduction: Voice Conversion

- Voice conversion binds a transformation between two speakers.
- The contents uttered by a source speaker are transferred to a target speaking style and identity.
Introduction: Voice Conversion Pipeline

TRAINING PHASE

- Training data
- Source speaker
- Target speaker

TRAINING PHASE:

- Analysis
- Parameterization
- Alignment
- Conversion function
- Training conversion function

CONVERSION PHASE:

- Input utterance
- Analysis
- Parameterization
- Conversion
- Inv. parameterization
- Synthesis
- Converted utterance

Acoustic features extraction

Waveform reconstruction
Introduction: Acoustic Features

- Classical conversion pipelines work in an acoustic domain after signal framing.
- We use a vocoder (Ahocoder) to make aco. frames $x_n \in \mathbb{R}^{43}$: 40 MFCC, 1 logF0, 1 voiced/unvoiced flag, 1 max. voiced freq.
Introduction: Aligned/Supervised Voice Conversion

- Supervised training of the conversion function f: we have matching frames b/w speakers, they say the same.
• **Challenging**: Unsupervised, no labeled conversions to targets: speakers differ in contents and/or language!
Introduction: Normalizing Flows

Fundamentals of NF: learn invertible, volume-tracking transformations of distributions that we can manipulate easily \(^1\).

Green square: Uniform(0, 1). Blue square: \(Y = f(X) = 2X + 1\). \(Y\) is thus a simple affine (scale and shift) transformation of the underlying source distribution \(X\).

\(^1\)https://blog.evjang.com/2018/01/nf1.html
Introduction: Normalizing Flows

Preserve total probability: change of $p(x)$ along dx must be equivalent to change of $p(y)$ along dy:

$$p(x)dx = p(y)dy$$

Only care about the amount of change in y and not its direction:

$$p(y) = p(x)\left|\frac{dx}{dy}\right|$$

$$\log p(y) = \log p(x) + \log \left|\frac{dx}{dy}\right|$$
Introduction: Normalizing Flows

Only care about the amount of change in y and not its direction:

$$p(y) = p(x) \left| \frac{dx}{dy} \right|$$

$$\log p(y) = \log p(x) + \log \left| \frac{dx}{dy} \right|$$

Going N-dimensional: volume change is the transformation matrix determinant.

$$y = f(x)$$

$$p(y) = p(x) \cdot |detJ(x)|$$

$$\log p(y) = \log p(x) + \log |detJ(x)|$$
Introduction: Normalizing Flows

Going N-dimensional: volume change is the transformation matrix determinant.

Additionally enforce function f **to have inverse** f^{-1}:

\[
y = f(x)
\]

\[
p(y) = p(f^{-1}(y)) \cdot |\text{det}J(f^{-1}(y))|
\]

\[
\log p(y) = \log p(f^{-1}(y)) + \log |\text{det}J(f^{-1}(y))|
\]
NFs are based on the concept of bijective transformations (bijectors). A bijector will implement:

- A forward transformation \(y = f(x) \) where \(f : \mathbb{R}^d \rightarrow \mathbb{R}^d \).
- Its inverse transformation \(x = f^{-1}(y) \).
- The inverse log determinant of the Jacobian \(\log |\det J(f^{-1}(y))| \) (ILDJ).

If bijector has tunable parameters \(\rightarrow \) can be learned to transform a base distribution \(\mathcal{X} \) to suit an arbitrary density \(\mathcal{Z} \), and go back!
Normalising Flows

Exploit the rule for change of variables:
- Begin with an initial distribution
- Apply a sequence of K invertible transforms

Sampling and Entropy

$$z_K = f_K \circ \ldots \circ f_2 \circ f_1(z_0)$$

$$\log q_K(z_K) = \log q_0(z_0) - \sum_{k=1}^{K} \log \det \frac{\partial f_k}{\partial z_k}$$

Distribution flows through a sequence of invertible transforms

Rezende and Mohamed, 2015
Introduction: Real Non-Volume Preserving Flows (Dinh et al. 2016)

Let $1 < d < D$, \odot element-wise multiplication and m, s two mappings $\mathbb{R}^d \rightarrow \mathbb{R}^{D-d}$. R-NVPs are defined as 2:

$$x_{1:d} = x_{1:d},$$

$$x_{d+1:D} = z_{d+1:D} \odot \exp(s(z_{1:d})) + m(z_{1:d})$$

2http://akosiorek.github.io/ml/2018/04/03/norm_flows.html#simple_flows
Introduction: Real Non-Volume Preserving Flows

Forward transformation (sampling):

- Copy first part of dimensions.
- Scale and shift the other part by learnable parameters.

Fully parallelizable! Inverse transformation (inference):

\[
\begin{align*}
\mathbf{z}_{1:d} &= \mathbf{x}_{1:d} \\
\mathbf{z}_{d+1:D} &= \frac{(\mathbf{x}_{d+1:D} - m(\mathbf{x}_{1:d}))}{\exp(s(\mathbf{x}_{1:d}))}
\end{align*}
\]

This operation is the affine coupling layer.
Introduction: Real Non-Volume Preserving Flows

The determinant of this layer is as simple as:

\[
\frac{\partial y}{\partial x^T} = \begin{bmatrix}
I_d & 0 \\
\frac{\partial y_{d+1:D}}{\partial x_{1:d}^T} & \text{diag} \left(\exp \left[s(x_{1:d}) \right] \right)
\end{bmatrix}
\]

Where \(s(x_{1:d}) \) is the predicted scale vector → Not necessary to compute \(s \) or \(m \) Jacobians; \(s \) and \(m \) can be arbitrarily complex (e.g. MLPs).
Introduction: Real NVP Feature Permutations

- Certain dimensions being just copied and forwarded.
- Permute the intermediate vectors and concatenate many affine coupling flows.
- After enough levels everything is transformed.
Real Non-Volume Preserving Voice Conversion
• Use $K = 6$ RNVP-like affine blocks.
• Each block is an MLP w/ 3 layers of sizes: $h_1 = 256$, $h_2 = 256$, and $h_3 = 43$ and LeakyReLUs.
Training RNVP-VC

- Project x frames from any speaker to z w/ reverse flow f.
- Compute likelihood of z belonging to an isotropic Gaussian distribution.
- Completely unsupervised task with all our pool of speakers.

$$
\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} - \log p_{\theta}(x_i)
$$
Mean Shift Conversion Method

Once RNVP-VC is trained on the mapping $z = f(x)$:

- Infer z samples for all training frames of source spk and target spk, storing vectors z^S_{mean} and z^T_{mean}.
- Conversion: source speaker frames $x^S_n \in \mathbb{R}^{43}$ are transformed into latent space features $z^S_n \in \mathbb{R}^{43}$.
- Shift z^S_n to z^T_n like: $z^T_n = z^S_n + \alpha(z^T_{\text{mean}} - z^S_{\text{mean}})$, with hyperparameter α controlling trade-off "distortion vs id change".
Initial Results
We train RNVP-VC with 2 speakers from CMU Arctic dataset \(^3\): awb (male) and slt (female). We post some initial conversion results b/w these speakers online: http://veu.talp.cat/rnvpvc.

\(^3\)http://festvox.org/cmu_arctic/
Conclusions
Conclusions

- An unsupervised approach to voice conversion has been shown with the use of normalizing flows.
- A stack of RNVP-like blocks acts as a density transformation from acoustic space \mathcal{X} to latent space \mathcal{Z}.
- The mean-shift operation can be used to transform identity in \mathcal{Z} space.
- Preliminary results show potential of this generative approach for unaligned voice conversion, leaving room for further improvement.
Thanks!