A Deep Learning Approach to Sign Language Recognition using Stacked Sparse Autoencoders

Dr. Pablo Rivas*

Ezequiel R.^ Omar V.^ Samuel G^ Deep D.*

- * Marist College, School of Computer Science and Mathematics
- ^ Nogales Institute of Technology, Research and Grad. Studies

The Problem

American Sign Language (ASL)

Learning the American Sign Language (ASL)

• Learning the American Sign Language (ASL)

• Learning the American Sign Language (ASL)

Existing Approaches

Method	Class type	# of class	# of subj.	Test w/ diff.	Input	Accur.(%)
Nagi et al. [8]	Gesture	6	-	No	Color	96
Van den Bergh et al. [14]	Gesture	6	-	No	Color & Depth	99.54
Isaacs et al. [3]	Alphabets	24	-	-	Color	99.9
Pugeault et al. [10]	Alphabets	24	5	-	Color	73
Pugeault et al. [10]	Alphabets	24	5	-	Depth	69
Pugeault et al. [10]	Alphabets	24	5	-	Color & Depth	75
Kuznetsova et al. [6] (50/50)%	Alphabets	24	5	No	Depth	87
Kuznetsova et al. [6] (4/1)	Alphabets	24	5	Yes	Depth	57
Dong et al. [2] (50/50)%	Alphabets	24	5	No	Depth	90
Dong et al. [2] (4/1)	Alphabets	24	5	Yes	Depth	70
Ours (re-training) (50/25/25)%	Alph. & Digit	31	5	No	Depth	99.99
Ours (re-training) (3/1/1)	Alph. & Digit	31	5	Yes	Depth	75.18
Ours (re-training) (4/1)	Alph. & Digit	31	5	Yes	Depth	78.39
Ours (fine-tuning) (3/1/1)	Alph. & Digit	31	5	Yes	Depth	83.58
Ours (fine-tuning) (4/1)	Alph. & Digit	31	5	Yes	Depth	85.49

[•] Kang, B., Tripathi, S., Nguyen, T.Q.: Real-time sign language fingerspelling recognition using convolutional neural networks from depth map. In: Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on, pp. 136–140. IEEE (2015)

Existing Solutions

Learning the American Sign Language (ASL)
 with CNNs

- Learning the American Sign Language (ASL)
 with Auto-encoders
 - Simpler than CNN
 - More efficient than CNN (deployed)
 - Faster to train than CNN (for a similar number of layers)
 - Similar performance to a CNN
 - CNNs are not the panacea in pattern recognition on images or computer vision

Lets talk about Auto-encoders

Lets talk about Auto-encoders

$$L = \frac{1}{N} \left\| \mathbf{x}_n - \mathbf{\hat{x}}_n \right\|_2^2 + \theta_w \frac{1}{2} \sum_{l=1}^{L} \left\| \mathbf{w}^l \right\|_2^2 + \theta_s \sum_{m=1}^{M} KL \left(\theta_\alpha \left\| \bar{\alpha}_m \right. \right)$$

Lets talk about Auto-encoders

$$L = \frac{1}{N} \left\| \mathbf{x}_n - \mathbf{\hat{x}}_n \right\|_2^2 + \theta_w \frac{1}{2} \sum_{l=1}^{L} \left\| \mathbf{w}^l \right\|_2^2 + \theta_s \sum_{m=1}^{M} KL \left(\theta_\alpha \| \bar{\alpha}_m \right)$$

$$\sum_{m=1}^{M} KL\left(\theta_{\alpha} \| \bar{\alpha}_{m}\right) = \sum_{m=1}^{M} \theta_{\alpha} \log \left(\frac{\theta_{\alpha}}{\bar{\alpha}_{m}}\right) + \left(1 - \theta_{\alpha}\right) \log \left(\frac{1 - \theta_{\alpha}}{1 - \bar{\alpha}_{m}}\right)$$

$$ar{lpha}_m = rac{1}{N} \sum_{n=1}^N \psi\left(\mathbf{w}_m^{(l)T}\mathbf{x}_n + b_m^{(l)}
ight)$$

Results

of the Auto-encoders

	S1	S2	S3	S4	S5	Avg.
ACC	0.9748	0.9923	0.9935	0.9929	0.9910	0.9889
SPC	0.9991	0.9997	0.9998	0.9998	0.9997	0.9996
MAE	0.1483	0.0640	0.0373	0.0347	0.0494	0.0667

Results

Results

RIST

 \mathbf{T}

Results

Chameleon Setup

- Resource type: bare metal/CHI@TACC
- Lease: GPU P100
- Image: CC-Ubuntu16.04-CUDA8
- Libraries:
 - cuDNN
 - libatlas-dev

Libraries: cuDNN

```
● ● ●
                               ^{\circ} cc@fox: \sim - ssh - 90×20 - \%1
Connection closed by 129.114.109.140
Pablos-MacBook-Air:.ssh rivas_perea$ ssh cc@129.114.109.140
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-72-generic x86_64)
 * Documentation: https://help.ubuntu.com
 * Management:
                  https://landscape.canonical.com
 * Support:
                  https://ubuntu.com/advantage
 Get cloud support with Ubuntu Advantage Cloud Guest:
    http://www.ubuntu.com/business/services/cloud
O packages can be updated.
O updates are security updates.
Last login: Tue Sep 12 16:35:00 2017 from 204.210.149.122
cc@fox:~$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
cc@fox:~$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
cc@fox:~$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
cc@fox:~$
                                                    MAKIST
```

Chameleon Setup

- Resource type: bare metal/CHI@TACC
- Lease: GPU P100
- Image: CC-Ubuntu16.04-CUDA8
- Packages:
 - gcc, gfortran

- tensorflow
- glances, nvidia-ml-py, screen

Conclusions

- Learning the American Sign Language (ASL)
 with Auto-encoders
 - Simpler than CNN
 - More efficient than CNN
 - Faster to train than CNN
 - Similar performance to a CNN
 - CNNs are not the panacea in pattern recognition on images or computer vision (no free lunch theorem)

A Deep Learning Approach to Sign Language Recognition using Stacked Sparse Autoencoders

Interested in code? Check Deep's repo:

https://github.com/DeepDand/research