

TAct: Optimal search through activation function space

Mario Banuelos, Heyley Gatewood, Samuel Hood, Jonathan Scott, and David Uminsky

mbgmath.com | @mbanuelos22

Acknowledgements

- Heyley Gatewood, Stetson University
- Samuel Hood, Morehouse College
- Jonathan Scott, Stetson University
- Mercedes Franco, Queensborough Community College
- David Uminsky, University of San Francisco (USF)
- Yannet Interian, USF

The Problem

- Deep learning methods addressing approximation of data should be generalizable.
- Hyperparameters and activation functions help accomplish this task.

The Problem

- Deep learning methods addressing approximation of data should be generalizable.
- Hyperparameters and activation functions help accomplish this task.
- Recent work has addressed this issue with learning rates [1].

[1] Smith, L. N. *Cyclical learning rates for training neural networks*. In Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, pp. 464-472. IEEE, 2017.

Activation Functions

- Many activation functions have been proposed (too many to enumerate!)
- Traditional approach:
 - 1) Fix a model
 - 2) Exhaustively incorporate different activation functions
 - 3) Report the highest accuracy model

Activation Functions

- Many activation functions have been proposed (too many to enumerate!)
- Traditional approach:
 - 1) Fix a model
 - 2) Exhaustively incorporate different activation functions
 - 3) Report the highest accuracy model
- Why not let the problem inform the choice of activation function?

Minimizing the L₂ distance

• A norm in C₂ in the interval [a,b] is defined by

$$\| f \| = \left(\int_{a}^{b} f^{2}(t) \, d \right)^{1/2}$$

Minimizing the L₂ distance

• A norm in C₂ in the interval [a,b] is defined by

$$||f|| = \left(\int_{a}^{b} f^{2}(t) d\right)^{1/2}$$

• A distance between functions *f* and *g* becomes

$$d(f,g) = \left(\int_{a}^{b} [g(t) - f(t)]^{2} d\right)^{1/2}$$

Minimizing the L₂ distance

• A norm in C₂ in the interval [a,b] is defined by

$$\|f\| = \left(\int_{a}^{b} f^{2}(t) d\right)^{1/2}$$

• A distance between functions *f* and *g* becomes

$$d(f,g) = \left(\int_{a}^{b} [g(t) - f(t)]^{2} d\right)^{1/2}$$

• Our Approach: Using a generalized function, minimize distance to *existing* activation functions.

Formulating TAct

- We propose a two-parameter, trainable Tanh activation function, which we call **TAct**.
- Exactly contains classic functions such as Tanh, Sigmoid and more recently Swish.
- Approximates functions like ReLu arbitrarily closely.

Formulating TAct

 To create this parameter space, we form a convex hull of nonlinear interpolations between these three activation functions:

$$\operatorname{TAct}(x) := \left(\frac{\mu+1}{6}x + \frac{2-\mu}{6}\right) \left(\tanh\left(\frac{\gamma+4}{6}x\right) + 1\right).$$

• We initialize parameters from a uniform distribution in [-1,1] x [-1,1].

Formulating TAct

 To create this parameter space, we form a convex hull of nonlinear interpolations between these three activation functions:

$$\operatorname{TAct}(x) := \left(\frac{\mu+1}{6}x + \frac{2-\mu}{6}\right) \left(\tanh\left(\frac{\gamma+4}{6}x\right) + 1\right).$$

• We initialize parameters from a uniform distribution in [-1,1] x [-1,1].

Visualizing TAct

Visualizing TAct

Visualizing TAct

Experiments

- Initial exploration with MNIST with poisson noise with fixed learning rates.
- Lower resolution is upsampled to 28 x 28 and then classified with LeNet-5 architecture.

Poisson MNIST

Poisson MNIST

Activation	28 x 28	14 x 14	7 x 7	4 x 4
ReLU	0.0216	0.0697	0.1887	0.3886
TAct	0.0190	0.0519	0.1719	0.3717

CIFAR Experiments

 Incorporate wide residual networks (WRN 28-10), for 200 epochs, using TAct.

WRN 28-10	Test Acc.
LReLU	95.6
Softplus	94.9
ReLU	95.3
Swish-1	95.3
TAct	95.94

CIFAR-10 Test Error

mbanuelos22@csufresno.edu

CIFAR Experiments

 Updated parameters: triangular learning rates, data augmentation in CIFAR-10 and CIFAR-100

Wide Residual Networks	DarkNet Architectures
N = [3, 4, 5, 6], k = 2	Darknet-39
N = 4, k = 6 — (22-6)	Darknet-53
N = 6, k = 2 — (40-2)	

Conclusions

• By letting the data drive the choice of activation functions, we achieve competitive test error rates when compared to other popular activation functions.

• We are currently conducting a more thorough comparison across more activation functions and architectures.

References

[1] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Tech. rep. Citeseer, 2009.

[2] K. Jarrett, K. Kavukcuoglu, Y. LeCun, et al. "What is the best multi-stage architecture for object recognition?" In: Computer Vision, 2009 IEEE 12th International Conference on. IEEE. 2009, pp. 2146–2153.

[3] V. Nair and G. E. Hinton. "Rectified linear units improve restricted boltzmann machines". In: Proceedings of the 27th international conference on machine learning (ICML-10). 2010, pp. 807–814.

[4] A. L. Maas, A. Y. Hannun, and A. Y. Ng. "Rectifier nonlinearities improve neural network acoustic models". In: Proc. icml. Vol. 30. 1. 2013, p. 3.

[5] K. He et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification". In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 1026–1034.

[6] D.A. Clevert, T. Unterthiner, and S. Hochreiter. "Fast and accurate deep network learning by exponential linear units (elus)". In: arXiv preprint arXiv:1511.07289 (2015).

[7] G. Klambauer et al. "Self-normalizing neural networks". In: Advances in Neural Information Processing Systems. 2017, pp. 971–980.

[8] P. Ramachandran, B. Zoph, and Q. V. Le. "Searching for Activation Functions". In: CoRR abs/1710.05941 (2017). arXiv: 1710.05941. url: http://arxiv.org/abs/1710.05941.

[9] H. Chung, S. J. Lee, and J. G. Park. "Deep neural network using trainable activation functions". In: Neural Networks (IJCNN), 2016 International Joint Conference on. IEEE. 2016, pp. 348–352.

[10] J. Redmon and A. Farhadi. "Yolov3: An incremental improvement". In: arXiv preprint arXiv:1804.02767 (2018).