Support Fuzzy-Set Machines

From Kernels on Fuzzy Sets to Machine Learning Applications LXAI-2018

Jorge Guevara Díaz¹ Roberto Hirata Jr.² Stéphane Canu³

¹IBM Research

²Institute of Mathematics and Statistics University of Sao Paulo-Brazil

³Institut National de Sciences Appliquees University of Normandy-France

December 08, 2018

Outline

- Introduction
- 2 Kernel Machines
- 3 Kernels on Fuzzy sets
- Support fuzzy-set machines

Outline

- Introduction
- 2 Kernel Machines
- Kernels on Fuzzy sets
- Support fuzzy-set machines

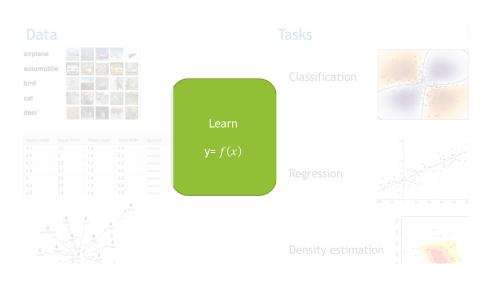
Introduction

Data

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa

Tasks Classification Regression Density estimation

Introduction



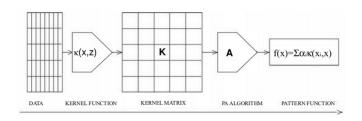
Introduction

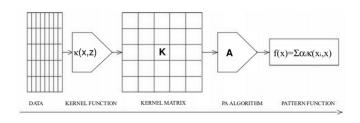
- Data representation
 - Images
 - Vectors
 - Conditional random fields
 - Structured data
 - logical predicates
 - Graphs
 - Distributions
 - Uncertain data
 - ▶ Probability measures
 - Fuzzy sets
 - Granular data
 - Fuzzy sets
 - Granular representations

- Similarity measures
 - A real valued function that quantifies the similarity between two objects
 - Many of them:
 - ► Inner products (Kernels)
 - Cosine similarity
 - Fuzzy similarity measures
 - etc
- Property
 - Inverse of distance metrics (in some sense)

Outline

- Introduction
- 2 Kernel Machines
- Kernels on Fuzzy sets
- 4 Support fuzzy-set machines





Support Vector Machines

$$\label{eq:alpha_exp} \begin{aligned} \min_{\pmb{\alpha} \in \mathbb{R}^N} & \quad \frac{1}{2} \pmb{\alpha}^\top K \pmb{\alpha} - \pmb{1}^\top \pmb{\alpha} \\ \text{subject to} & \quad \pmb{\alpha}^\top \mathbf{y} = \mathbf{0}. \\ & \quad 0 \leq \alpha_i \leq \lambda, \ i = 1, \dots, N. \end{aligned}$$

Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297 Figure from Shawe-Taylor, John, and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university press, 2004.

Support Vector Machines

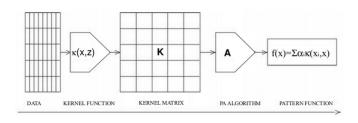
Implementation example CVX (http://cvxr.com/cvx/) and MATLAB

```
0.4499169
            0.0015187
                         1.0000000
0.8180969
            0.3841642
                         1.0000000
0.6864155
            0.9862297
                         1.0000000
0.8403105
            0.0462144
                        1.0000000
0.2644775
            0.0609907
                        1.0000000
0.1371175
            0.3148678
                         1.0000000
1.1708515
            1.3779732
                        -1.0000000
1.0769097
            1.5763168
                        -1.0000000
0.8492538
            1.6056590
                        -1.0000000
1.3273406
            1.5865217
                        -1.0000000
1.1415545
            1.7362638
                        -1.0000000
```

Support Vector Machines

 $Implementation\ example\ monqp\ (http://asi.insa-rouen.fr/enseignants/\ arakoto/toolbox/index.html\)\ and\ MATLAB$

```
K=computeKernel(X,y,kernelParameters)
K=K+eps*eye(n);
C=10:
cvx_begin
    variable alpha(n);
        dual variables bDual alDual allDual;
            minimize( 0.5*alpha'*K*alpha-ones(n,1)'*alpha)
            subject to
                bDual : alpha'*v==0:
                alDual : zeros(n,1)<=alpha<=C*ones(n,1);</pre>
cvx_end
supportVectorIndex=find(alpha>0.00001);
```



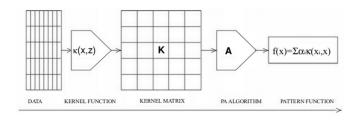
Kernel PCA

Solve
$$M\lambda\alpha = K\alpha$$

subject to $\alpha^{\top}K\alpha = 1$.

where the eigen functions are given by $V(.) = \sum_{i} \alpha_{i} k(x_{i},.)$

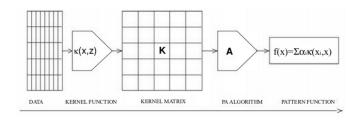
Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. "Nonlinear component analysis as a kernel eigenvalue problem." Neural computation 10.5 (1998): 1299-1319.



Gaussian process regression

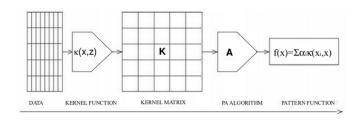
- $f \sim \mathcal{GP}(\mathbb{E}[f(X)], k(x, x)) = \mathcal{GP}(m(x), k(x, x))$
- Predictive distribution $y_i \mid x_*, x, \mathbf{y} \sim \mathcal{N}\left(k(x_*, x)k(x, x)^{-1}\mathbf{y}, k(x_*, x_*) k(x_*, x)k(x, x)^{-1}k(x, x_*)\right)$
- thus, $y = \hat{f}(x_*) \equiv k(x_*, x)k(x, x)^{-1}y = \sum_i \alpha_i k(x_i, x_*)$, where $\alpha = K^{-1}y$

Rasmussen, Carl Edward. "Gaussian processes in machine learning." Advanced lectures on machine learning. Springer, Berlin, Heidelberg, 2004. 63-71.



Support Vector Data Description

Tax, David MJ, and Robert PW Duin. "Support vector data description." Machine learning 54.1 (2004): 45-66.

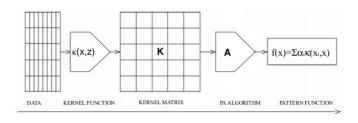


Kernel two-sample test

$$MMD[\mathcal{F}, \mathbb{P}, \mathbb{Q}] = \|\mathbb{E}_{X \sim \mathbb{P}}[k(., X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[k(., Y)]\|_{\mathcal{H}},$$
(1)

$$MMD_{u}^{2}[\mathcal{F}, s_{X}, s_{Y}] = \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j \neq i}^{m} k(x_{i}, x_{j}) + \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} k(y_{i}, y_{j}) - \frac{2}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} k(x_{i}, y_{j})$$

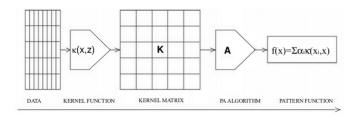
Gretton, Arthur, et al. "A kernel two-sample test." Journal of Machine Learning Research 13.Mar (2012): 723-773.



Radial basis function neural network

$$f(x) = \sum_{l=1}^{L} w_l \exp(-\gamma ||x - \mu_k||^2)$$

Broomhead, David S., and David Lowe. Radial basis functions, multi-variable functional interpolation and adaptive networks. No. RSRE-MEMO-4148. Royal Signals and Radar Establishment Malvern (United Kingdom), 1988.



- SVM
- kernel PCA
- Gaussian process

- SVDD
- MKL SMDD

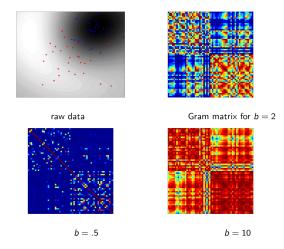
- Kernel regression
- Kernel two-sample test
- kernel spectral clustering

Representer Theorem

$$f^* = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \operatorname{Cost}((x_1, y_1, f(x_1)), \dots, (x_N, y_N, f(x_N))) + \Omega(\|f\|)$$
 (2)

$$f^*(.) = \sum_{i=1}^{N} \alpha_i k(., x_i)$$
 (3)

A kernel matrix is a similarity matrix



RKHS, where the magic happens

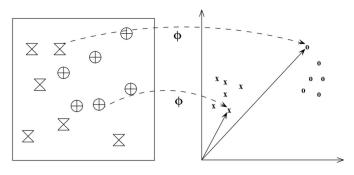


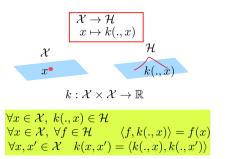
Figure: Kernel mapping^a

Figure from Shawe-Taylor et al. "Kernel Methods for Pattern Analysis". Cambridge University Press.

RKHS, where the magic happens

Main ingredient

• A real-valued symmetric positive definite kernel k. $\sum_{i=1}^{N} c_i c_i k(x_i, x_i) \ge 0$



Definition (Reproducing kernel)

A function

$$k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$$
 $(x,y) \mapsto k(x,t)$ (4)

is called a reproducing kernel of the Hilbert space ${\cal H}$ if and only if:

Definition (Reproducing kernel)

A function

$$k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$$
 $(x, y) \mapsto k(x, t)$ (4)

is called a reproducing kernel of the Hilbert space ${\cal H}$ if and only if:

Reproducing property

$$\forall (x,y) \in \mathcal{X} \times \mathcal{X}, \ k(x,y) = \langle k(.,x), k(.,y) \rangle_{\mathcal{H}}$$
 (5)

Definition (Real RKHS)

A Hilbert Space of real valued functions on \mathcal{X} , denoted by \mathcal{H} , with reproducing kernel is called a real Reproducing Kernel Hilbert Space or real RKHS.

Definition (Real RKHS)

A Hilbert Space of real valued functions on \mathcal{X} , denoted by \mathcal{H} , with reproducing kernel is called a real Reproducing Kernel Hilbert Space or real RKHS.

Characterization

All the evaluation functionals are continuous on \mathcal{H}_{\cdot} :

$$e_{x}: \mathcal{H} \rightarrow \mathbb{R}$$
 (6)

$$f \mapsto e_x(f) = f(x)$$
 (7)

Berlinet, Alain, and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and statistics. Springer Science Business Media, 2011.

Lemma

Any reproducing kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric positive definite function, that is, it satisfies:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_i c_j k(x_i, x_j) \ge 0$$
 (8)

 $\forall N \in \mathbb{N}, \ \forall c_i, c_j \in \mathbb{R} \ \text{and} \ k(x,y) = k(y,x), \ \forall x,y \in \mathcal{X}. \ \text{The converse is true.}$

Lemma

Any reproducing kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric positive definite function, that is, it satisfies:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_i c_j k(x_i, x_j) \ge 0$$
 (8)

 $\forall N \in \mathbb{N}, \ \forall c_i, c_j \in \mathbb{R} \ \text{and} \ k(x,y) = k(y,x), \ \forall x,y \in \mathcal{X}. \ \text{The converse is true.}$

Consequently

Kernels k are reproducing kernels of some RKHS. The space spanned by k(x, .) generates a RKHS or a Hilbert space with reproducing kernel k.

If k is a reproducing kernel, then

$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}c_{j}k(x_{i}, x_{j}) = \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}c_{j}\langle k(., x_{i}), k(., x_{j})\rangle_{\mathcal{H}}$$

$$= \langle \sum_{i=1}^{N} c_{i}k(., x_{i}), \sum_{j=1}^{N} c_{j}k(., x_{j})\rangle_{\mathcal{H}}$$

$$= \|\sum_{i=1}^{N} c_{i}k(., x_{i})\|_{\mathcal{H}}^{2}$$

$$\geq 0$$

If k is a reproducing kernel, then

$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}c_{j}k(x_{i}, x_{j}) = \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}c_{j}\langle k(., x_{i}), k(., x_{j})\rangle_{\mathcal{H}}$$

$$= \langle \sum_{i=1}^{N} c_{i}k(., x_{i}), \sum_{j=1}^{N} c_{j}k(., x_{j})\rangle_{\mathcal{H}}$$

$$= \|\sum_{i=1}^{N} c_{i}k(., x_{i})\|_{\mathcal{H}}^{2}$$

$$\geq 0$$

That is

Elements of the RKHS are real-valued functions on \mathcal{X} of the form $f(.) = \sum_{i=1}^{N} c_i k(., x_i)$.

Examples of reproducing kernels or positive definite kernels

$$k(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^{2}$$

$$= (1 + x_{1}x'_{1} + x_{2}x'_{2})^{2}$$

$$= (1 + x_{1}^{2}x'_{1}^{2} + x_{2}^{2}x'_{2}^{2} + 2x_{1}x'_{1} + 2x_{2}x'_{2} + 2x_{1}x'_{1}x_{2}x'_{2})$$

$$= \left\langle (1, x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}, \sqrt{2}x_{2}, \sqrt{2}x_{1}x_{2}), (1, x_{1}'^{2}, x_{2}'^{2}, \sqrt{2}x'_{1}, \sqrt{2}x'_{2}, \sqrt{2}x'_{1}x'_{2}) \right\rangle$$

Examples of reproducing kernels or positive definite kernels

$$k(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^{2}$$

$$= (1 + x_{1}x_{1}' + x_{2}x_{2}')^{2}$$

$$= (1 + x_{1}^{2}x_{1}'^{2} + x_{2}^{2}x_{2}'^{2} + 2x_{1}x_{1}' + 2x_{2}x_{2}' + 2x_{1}x_{1}'x_{2}x_{2}')$$

$$= \left\langle (1, x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}, \sqrt{2}x_{2}, \sqrt{2}x_{1}x_{2}), (1, x_{1}'^{2}, x_{2}'^{2}, \sqrt{2}x_{1}', \sqrt{2}x_{2}', \sqrt{2}x_{1}'x_{2}') \right\rangle$$

Polynomial kernel $k(\mathbf{x}, \mathbf{x}') = (a + b\mathbf{x}^{\mathsf{T}}\mathbf{x}')^{\gamma}$

Examples of reproducing kernels or positive definite kernels

$$k(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^{2}$$

$$= (1 + x_{1}x_{1}' + x_{2}x_{2}')^{2}$$

$$= (1 + x_{1}^{2}x_{1}'^{2} + x_{2}^{2}x_{2}'^{2} + 2x_{1}x_{1}' + 2x_{2}x_{2}' + 2x_{1}x_{1}'x_{2}x_{2}')$$

$$= \left\langle (1, x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}, \sqrt{2}x_{2}, \sqrt{2}x_{1}x_{2}), (1, x_{1}'^{2}, x_{2}'^{2}, \sqrt{2}x_{1}', \sqrt{2}x_{2}', \sqrt{2}x_{1}'x_{2}') \right\rangle$$

Polynomial kernel $k(\mathbf{x}, \mathbf{x}') = (a + b\mathbf{x}^{\mathsf{T}}\mathbf{x}')^{\gamma}$

K=((X*Z'+kernelParam(1)).^kernelParam(2));

Examples of reproducing kernels or positive definite kernels

$$k(x, x') = \exp(-(x - x')^2)$$

= $\exp(-x^2) \exp(-x'^2) \sum_{i=0}^{\infty} \frac{2^i x^i x'^i}{i!}$

infinite dimensional

Examples of reproducing kernels or positive definite kernels

$$k(x, x') = \exp(-(x - x')^{2})$$

$$= \exp(-x^{2}) \exp(-x'^{2}) \sum_{i=0}^{\infty} \frac{2^{i} x^{i} x'^{i}}{i!}$$

infinite dimensional

RBF kernel
$$k(\mathbf{x}, \mathbf{x}') = \exp(-0.5 * \gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

Examples of reproducing kernels or positive definite kernels

$$k(x, x') = \exp(-(x - x')^2)$$

= $\exp(-x^2) \exp(-x'^2) \sum_{i=0}^{\infty} \frac{2^i x^i x'^i}{i!}$

infinite dimensional

RBF kernel
$$k(\mathbf{x}, \mathbf{x}') = \exp(-0.5 * \gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

 $K=\exp(-0.5*kernelParam*sqdistAll(X,Z));$

Examples of reproducing kernels or positive definite kernels The real-valued kernel on $\mathcal{P} \times \mathcal{P}$, defined by

$$\tilde{k}(\mathbb{P}, \mathbb{Q}) = \langle \mathbb{E}_{\mathbb{P}}[k(X, \cdot)], \mathbb{E}_{\mathbb{Q}}[k(X', \cdot)] \rangle_{\mathcal{H}}$$

$$= \int_{\mathbf{x} \in \mathbb{R}^{D}} \int_{\mathbf{x}' \in \mathbb{R}^{D}} k(\mathbf{x}, \mathbf{x}') d\mathbb{P}(\mathbf{x}) d\mathbb{Q}(\mathbf{x}')$$
(9)

is positive definite.

Examples of reproducing kernels or positive definite kernels The real-valued kernel on $\mathcal{P} \times \mathcal{P}$, defined by

$$\tilde{k}(\mathbb{P}, \mathbb{Q}) = \langle \mathbb{E}_{\mathbb{P}}[k(X, \cdot)], \mathbb{E}_{\mathbb{Q}}[k(X', \cdot)] \rangle_{\mathcal{H}}$$

$$= \int_{\mathbf{x} \in \mathbb{R}^{D}} \int_{\mathbf{x}' \in \mathbb{R}^{D}} k(\mathbf{x}, \mathbf{x}') d\mathbb{P}(\mathbf{x}) d\mathbb{Q}(\mathbf{x}')$$
(9)

is positive definite.

```
for i=1:n
    for i=i:n
         [L,\sim] = size(S\{i\});
         [LL,\sim]= size(S{i});
        k=kernel(S{i},S{j},kernelOp,kernelParam);
        K(i,j) = sum(sum(k))/(L*LL);
        K(i,i)=Krr(i,i);
end
```

Examples of reproducing kernels or positive definite kernels

- Mean maps with stationary kernels do not have constant norm $\|\mu_{\mathbb{P}}\|_{\mathcal{H}} = \|\mathbb{E}_{\mathbb{P}}[k_{l}(X.,)]\|_{\mathcal{H}} \leq \mathbb{E}_{\mathbb{P}}[\|k_{l}(X.,)\|_{\mathcal{H}}] = \sqrt{|\epsilon|}$
- normalize mean maps to lie on a surface of some hypersphere

$$\tilde{\tilde{k}}(\mathbb{P}_{i}, \mathbb{P}_{j}) = \frac{\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}}{\sqrt{\langle \mu_{\mathbb{P}}, \mu_{\mathbb{P}} \rangle_{\mathcal{H}} \langle \mu_{\mathbb{Q}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}}},$$
(10)

• the injectivity of $\mu : \mathcal{P} \to \mathcal{H}$ is preserved.

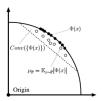


Figure: Figure from ^a

Examples of reproducing kernels or positive definite kernels

- Mean maps with stationary kernels do not have constant norm $\|\mu_{\mathbb{P}}\|_{\mathcal{H}} = \|\mathbb{E}_{\mathbb{P}}[k_{I}(X.,)]\|_{\mathcal{H}} \leq \mathbb{E}_{\mathbb{P}}[\|k_{I}(X.,)\|_{\mathcal{H}}] = \sqrt{|\epsilon|}$
- normalize mean maps to lie on a surface of some hypersphere

$$\tilde{\tilde{k}}(\mathbb{P}_{i}, \mathbb{P}_{j}) = \frac{\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}}{\sqrt{\langle \mu_{\mathbb{P}}, \mu_{\mathbb{P}} \rangle_{\mathcal{H}} \langle \mu_{\mathbb{Q}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}}},$$
(11)

the injectivity of μ : P → H is preserved.

```
for i=1:n
    for j=i:n
        [L.\sim] = size(S{i}):
        [LL.\sim]= size(S{i});
        k=kernel(S{i},S{j},kernelOp,kernelParam);
        K(i,j) = sum(sum(k))/(L*LL);
        K(i,i)=K(i,i):
        KN=K./sqrt(diag(K)*diag(K)');
```

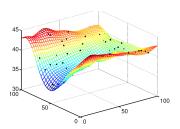
Do you want implement this kernel?

$$k_{\nu=p+1/2}(r) = \exp\left(-\frac{\sqrt{2\nu}r}{\ell}\right) \frac{\Gamma(p+1)}{\Gamma(2p+1)} \sum_{i=0}^{p} \frac{(p+i)!}{i!(p-i)!} \left(\frac{\sqrt{8\nu}r}{\ell}\right)^{p-i}.$$

Do you want implement this kernel?

$$k_{\nu = p + 1/2}(r) \ = \ \exp\Big(-\,\frac{\sqrt{2\nu}r}{\ell}\Big) \frac{\Gamma(p+1)}{\Gamma(2p+1)} \sum_{i=0}^p \frac{(p+i)!}{i!(p-i)!} \Big(\frac{\sqrt{8\nu}r}{\ell}\Big)^{p-i}.$$

That is the Matern kernel, widely used in kriging procedures by geostatisticians



 $Figure\ from:\ https://www.ethz.ch/content/special interest/baug/institute-ibk/risk-safety-and-uncertainty/en/research/past-projects/polynomial-chaos-kriging.html$

Examples of reproducing kernels or positive definite kernels

• Linear kernel $k(x, y) = \langle x, y \rangle \ x, y \in \mathbb{R}^D$

- Linear kernel $k(x, y) = \langle x, y \rangle \ x, y \in \mathbb{R}^D$
- Polynomial kernel $k(x,y) = (\langle x,y \rangle + 1)^D x, y \in \mathbb{R}^D$

- Linear kernel $k(x, y) = \langle x, y \rangle \ x, y \in \mathbb{R}^D$
- Polynomial kernel $k(x,y) = (\langle x,y \rangle + 1)^D \ x,y \in \mathbb{R}^D$
- Gaussian kernel $k(x, y) = \exp(-\|x y\|^2/\sigma^2) \ x, y \in \mathbb{R}^D$

- Linear kernel $k(x, y) = \langle x, y \rangle \ x, y \in \mathbb{R}^D$
- Polynomial kernel $k(x,y) = (\langle x,y \rangle + 1)^D \ x,y \in \mathbb{R}^D$
- Gaussian kernel $k(x, y) = \exp(-\|x y\|^2/\sigma^2) \ x, y \in \mathbb{R}^D$
- Probability product kernel $\tilde{k}(\mathbb{P},\mathbb{Q})=\int_{\mathcal{X}}\mathbb{P}(x)^{\rho}\mathbb{Q}(x)^{\rho}dx$

- Linear kernel $k(x, y) = \langle x, y \rangle \ x, y \in \mathbb{R}^D$
- Polynomial kernel $k(x, y) = (\langle x, y \rangle + 1)^D x, y \in \mathbb{R}^D$
- Gaussian kernel $k(x, y) = \exp(-\|x y\|^2/\sigma^2) \ x, y \in \mathbb{R}^D$
- Probability product kernel $\tilde{k}(\mathbb{P},\mathbb{Q})=\int_{\mathcal{X}}\mathbb{P}(x)^{\rho}\mathbb{Q}(x)^{\rho}dx$
- Kernel on probability measures for $X \sim \mathbb{P}, X' \sim \mathbb{Q}$, $\tilde{k}(\mathbb{P}, \mathbb{Q}) = \langle \mathbb{E}_{\mathbb{P}}[k(X.,)], \mathbb{E}_{\mathbb{Q}}[k(X'.,)] \rangle_{\mathcal{H}}$

Making new kernels from old If k_1 and k_2 are PD kernels, by closure properties of PD kernels, also are PD kernels:

- \bullet $k_1(x,y) + k_2(x,y);$
- $ak_1(x,y), \quad \alpha \in \mathbb{R}^+;$
- **3** $k_1(x,y)k_2(x,y)$;
- k(f(x), f(y))
- **o** $\exp(k_1(x,y));$

Positive definite kernels are

• coovariance functions, i.e., $k(x, x') = \mathbb{E}[f(x)f(x')]$,

- coovariance functions, i.e., $k(x, x') = \mathbb{E}[f(x)f(x')]$,
- similarity measures,

- coovariance functions, i.e., $k(x, x') = \mathbb{E}[f(x)f(x')]$,
- similarity measures,
- related to metrics by: k(x,x) 2k(x,x') + k(x',x')

- coovariance functions, i.e., $k(x, x') = \mathbb{E}[f(x)f(x')]$,
- similarity measures,
- related to metrics by: k(x,x) 2k(x,x') + k(x',x')
- the main ingredient to define RKHS

- coovariance functions, i.e., $k(x, x') = \mathbb{E}[f(x)f(x')]$,
- similarity measures,
- related to metrics by: k(x,x) 2k(x,x') + k(x',x')
- the main ingredient to define RKHS
- very useful in practice in machine learning, i.e., they define gram matrices $K_{i,j} = k(x_i, x_j)$ used in ML algorithms

- coovariance functions, i.e., $k(x, x') = \mathbb{E}[f(x)f(x')]$,
- similarity measures,
- related to metrics by: k(x,x) 2k(x,x') + k(x',x')
- the main ingredient to define RKHS
- very useful in practice in machine learning, i.e., they define gram matrices $K_{i,j} = k(x_i, x_j)$ used in ML algorithms
- defined on non empty sets: That enables its use on non-vectorial spaces. (sets, graphs, strings, etc)

Outline

- Introduction
- Kernel Machines
- Kernels on Fuzzy sets
- Support fuzzy-set machines

Material

- Guevara, Jorge, et.al. "Kernels on Fuzzy Sets: an Overview", Learning on Distributions, Functions, Graphs and Groups @ NIPS-2017
- Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity."
 Fuzzy Systems (FUZZ-IEEE), 2017.
- Guevara, Jorge. "Supervised machine learning with kernel embeddings of fuzzy sets and probability measures." Diss. IME USP, 2016.
- Guevara, Jorge, et.al. "Fuzzy Set Similarity using a Distance-Based Kernel on Fuzzy Sets", 2016, Book Chapter, Handbook of Fuzzy Sets Comparison - Theory, Algorithms and Applications, pages 103-120.
- Guevara, Jorge, et.al. "Positive Definite Kernel Functions on Fuzzy Sets." Fuzzy Systems (FUZZ-IEEE), 2014.
- Guevara, Jorge, et.al. "Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input." Fuzzy Systems (FUZZ-IEEE), 2013.

Fuzzy data

Var 1	Var 2	Var 3	Var 4	Var 5	Var 6	MF
2213	345	23	2	34543	34545	0.9
3234	345	13	4	34556	34534	0.7
4423	355	77	5	45366	34545	0.8
2343	367	27	37	54535	34563	0.002

Fuzzy data

Var 1	Var 2	Var 3	Var 4	MF 1	MF 2	MF 3	MF 4
2213	345	23	2	0.3	0.9	1	0.9
3234	345	13	4	0.5	0.9	0.3	0.4
4423	355	77	5	1	0.5	0.002	0.7
2343	367	27	37	0.4	2	0.9	0.01

Fuzzy data

Var 1	Var 2	Var 3	Var 4	Var 5
X_1^1	X_2^1	X_3^1	X_4^1	X_{5}^{1}
X_1^2	X_2^2	X_{3}^{2}	X_{4}^{2}	X_{5}^{2}
X_1^3	X_{2}^{3}	X_3^3	X_4^3	X_{5}^{3}
X_1^4	X_2^4	X_3^4	X_4^4	X_{5}^{4}

$$X: \Omega \rightarrow [0,1]$$

 $x \mapsto X(x).$

Motivation

• similarity measure between fuzzy sets given by kernels

- similarity measure between fuzzy sets given by kernels
- geometric interpretation of similarity between fuzzy set in RKHS

- similarity measure between fuzzy sets given by kernels
- geometric interpretation of similarity between fuzzy set in RKHS
- embedding of fuzzy sets into RKHS

- similarity measure between fuzzy sets given by kernels
- geometric interpretation of similarity between fuzzy set in RKHS
- embedding of fuzzy sets into RKHS
- using fuzzy data "as is" in kernel methods

- similarity measure between fuzzy sets given by kernels
- geometric interpretation of similarity between fuzzy set in RKHS
- embedding of fuzzy sets into RKHS
- using fuzzy data "as is" in kernel methods
- covariance matrix for fuzzy samples

• Fuzzy sets on Ω are denoted by X, Y, Z.

- Fuzzy sets on Ω are denoted by X, Y, Z.
- The membership function $\Omega : \to [0,1]$ of a fuzzy set is denoted by X(.).

- Fuzzy sets on Ω are denoted by X, Y, Z.
- The membership function $\Omega : \to [0,1]$ of a fuzzy set is denoted by X(.).
- $\mathcal{F}(\Omega)$ is the set of all the fuzzy sets on Ω .

- Fuzzy sets on Ω are denoted by X, Y, Z.
- The membership function $\Omega : \to [0,1]$ of a fuzzy set is denoted by X(.).
- $\mathcal{F}(\Omega)$ is the set of all the fuzzy sets on Ω .

Definition (Support of a fuzzy set)

The support of a fuzzy set is the set

$$supp(X) = \{x \in \Omega | X(x) > 0\}.$$

Definition (Cross product kernel on fuzzy sets)

The cross product kernel on fuzzy sets is a function $k_{\times}: \mathcal{F}(\Omega) \times \mathcal{F}(\Omega) \to \mathbb{R}$ given by:

$$k_{\times}(X,Y) = \sum_{\substack{x \in \text{supp}(X), \\ y \in \text{supp}(Y)}} k_1 \otimes k_2((x,X(x)),(y,Y(y))), \tag{12}$$

where: $k_1: \Omega \times \Omega \to \mathbb{R}, k_2: [0,1] \times [0,1] \to \mathbb{R}$,

$$k_1 \otimes k_2(x, X(x), y, Y(y)) = k_1(x, y) \ k_2(X(x), Y(y)).$$
 (13)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.

Lemma

If k_1 and k_2 are real-valued pd kernels, then the cross product kernel on fuzzy sets is pd.

Lemma

If k_1 and k_2 are real-valued pd kernels, then the cross product kernel on fuzzy sets is pd.

Corollary

Kernel k_{\times} defines a similarity measure for two fuzzy sets $X,Y\in\mathcal{F}(\Omega)$ as follows:

$$k_{\times}(X,Y) = \langle \phi_X, \phi_Y \rangle_{\mathcal{H}},$$
 (14)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.

$$\begin{array}{ll} k_1(x,y) & k_{\times}(X,Y) \\ \\ \text{linear} & \sum_{\substack{x \in \text{supp}(X), \\ y \in \text{supp}(Y)}} xyX(x)Y(y) \\ \\ \text{polynomial} & \sum_{\substack{x \in \text{supp}(X), \\ y \in \text{supp}(Y)}} (\gamma\langle x,y\rangle + b)^{\beta}X(x)Y(y) \\ \\ \text{exponential} & \sum_{\substack{x \in \text{supp}(X), \\ y \in \text{supp}(Y)}} \exp(\gamma\langle x,y\rangle)X(x)Y(y) \\ \\ \text{Gaussian} & \sum_{\substack{x \in \text{supp}(X), \\ y \in \text{supp}(Y)}} \exp(-\gamma\|x-y\|^2)X(x)Y(y) \end{array}$$

Table: Examples of cross product kernels on fuzzy sets.

Example

Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space. Let k_1, k_2 be continuous functions with finite integral. The kernel

$$k_{\times}(X,Y) = \iint_{\substack{X \in \text{supp}(X), \\ y \in \text{supp}(Y)}} k_{1} \otimes k_{2}((x,X(x)),(y,Y(y))) d\mu(x) d\mu(y),$$

$$(15)$$

is a cross product kernel on fuzzy sets.

Example

Replacing the measure μ of the previous example with a probability measure $\mathbb P$ results in the following cross product kernel on fuzzy sets:

$$\begin{split} k_{\times}(X,Y) &= \\ \iint_{\substack{x \in \text{supp}(X), \\ y \in \text{supp}(Y)}} k_{\mathbf{1}} \otimes k_{\mathbf{2}} \big((x,X(x)), (y,Y(y)) \big) d\mathbb{P}(x) d\mathbb{P}(y), \end{split}$$

(16)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.

A generalization of k_{\times} to deal with a D-tuple of fuzzy sets, i.e., $(X_1,\ldots,X_D)\in\mathcal{F}(\Omega_1)\times\cdots\times\mathcal{F}(\Omega_D)$ is implemented by the following kernel:

$$k_{\times}^{\pi}((X_{1},\ldots,X_{D}),(Y_{1},\ldots,Y_{D})) = \prod_{d=1}^{D} k_{\times}^{d}(X_{d},Y_{d}).$$
 (17)

If all the kernels k_{\times}^d are positive definite then k_{\times}^{π} is positive definite by closure properties of kernels. Another generalization based on addition of positive definite kernels is also possible:

$$k_{\times}^{\Sigma}((X_1,\ldots,X_D),(Y_1,\ldots,Y_D)) = \sum_{d=1}^{D} \alpha_i k_{\times}^d(X_d,Y_d).$$
 (18)

Kernel k_{\times}^{Σ} is positive definite if only if $\alpha_i \in \mathbb{R}^+$ and all the k_{\times}^D kernels are positive definite.

Properties

• k_{\times} is a convolution kernel, i.e., it can be derived from $k_{conv}(e,e') = \sum_{\vec{e} \in R^{-1}(e), \vec{e}' \in R^{-1}(e')} \prod_{l=1}^{L} k_l(e_l,e_l'),$

Properties

- k_{\times} is a convolution kernel, i.e., it can be derived from $k_{conv}(e,e') = \sum_{\vec{e} \in R^{-1}(e), \vec{e}' \in R^{-1}(e')} \prod_{l=1}^{L} k_l(e_l,e_l'),$
- k_{\times} generalize the cross product kernel on sets, i.e., k(A, A')

Properties

- k_{\times} is a convolution kernel, i.e., it can be derived from $k_{conv}(e,e') = \sum_{\vec{e} \in R^{-1}(e), \vec{e}' \in R^{-1}(e')} \prod_{l=1}^{L} k_l(e_l,e_l'),$
- k_{\times} generalize the cross product kernel on sets, i.e., k(A, A')
- k_{\times} embeds probability distributions into a RKHS.

Properties

- k_{\times} is a convolution kernel, i.e., it can be derived from $k_{conv}(e,e') = \sum_{\vec{e} \in R^{-1}(e), \vec{e}' \in R^{-1}(e')} \prod_{l=1}^{L} k_l(e_l,e_l'),$
- k_{\times} generalize the cross product kernel on sets, i.e., k(A, A')
- k_{\times} embeds probability distributions into a RKHS.
- ullet fuzzines and radomness modeling (see example when $\mu=\mathbb{P}$)

Properties

- k_{\times} is a convolution kernel, i.e., it can be derived from $k_{conv}(e,e') = \sum_{\vec{e} \in R^{-1}(e), \vec{e}' \in R^{-1}(e')} \prod_{l=1}^{L} k_l(e_l,e_l'),$
- k_{\times} generalize the cross product kernel on sets, i.e., k(A, A')
- k_{\times} embeds probability distributions into a RKHS.
- ullet fuzzines and radomness modeling (see example when $\mu=\mathbb{P}$)
- noise resistant under supervised classification experiments on attribute noisy datasets (see Paper below)

Guevara, Jorge, et.al. "Cross product kernels for fuzzy set similarity." Fuzzy Systems (FUZZ-IEEE), 2017.

```
for i=1:n
    for j=i:n
        [L,~] = size(S{i});
        [LL,~]= size(S{j});

    %X*X'
        k = (S{i}* S{j}').* (MF{i} * MF{j})')
        K(i,j)= sum(sum(k))/(L*LL);
        K(j,i)=K(i,j);
    end
end
```

```
for i=1:n
    for j=i:n
      [[,\nabla] = size(S{i});
      [LL,\nabla] = size(S{j});

    %use your favorite kernels
      k=computeKernel(S{i},S{j},param1,kernelOption).* computeKernel(MF{i},MF{j}),param2,kernelOption)
      K(i,j) = sum(sum(k))/(L*LL);
      K(j,i)=K(i,j);
end
end
```

A triangular norm or **T-norm** is the function $T:[0,1]^2 \to [0,1]$, such that, for all $x,y,z \in [0,1]$ satisfies:

- T1 commutativity: T(x, y) = T(y, x);
- T2 associativity: T(x, T(y, z)) = T(T(x, y), z);
- T3 monotonicity: $y \le z \Rightarrow T(x, y) \le T(x, z)$;
- T4 boundary condition T(x, 1) = x.

A triangular norm or **T-norm** is the function $T:[0,1]^2 \to [0,1]$, such that, for all $x,y,z \in [0,1]$ satisfies:

- T1 commutativity: T(x, y) = T(y, x);
- T2 associativity: T(x, T(y, z)) = T(T(x, y), z);
- T3 monotonicity: $y \le z \Rightarrow T(x,y) \le T(x,z)$;
- T4 boundary condition T(x, 1) = x.

a multiple-valued extension

Using $n \in \mathbb{N}$, $n \geq 2$ and associativity, a multiple-valued extension $T_n : [0,1]^n \to [0,1]$ of a T-norm T is given by $T_2 = T$ and

$$T_n(x_1, x_2, \dots, x_n) = T(x_1, T_{n-1}(x_2, x_3, \dots, x_n)).$$
 (19)

We will use T to denote T or T_n .

A semi-ring of sets, S on Ω , is a subset of the power set $\mathcal{P}(\Omega)$, that is, a set of sets satisfying:

- 1 $\phi \in \mathcal{S}$, ϕ denotes the empty set;
- $2 A, B \in \mathcal{S}, \implies A \cap B \in \mathcal{S};$
- 3 for all $A, A_1 \in \mathcal{S}$ and $A_1 \subseteq A$, there exists a sequence of pairwise disjoint sets $A_2, A_3, \dots A_N \subseteq \mathcal{S}$, such

$$A = \bigcup_{i=1}^{N} A_i.$$

A semi-ring of sets, S on Ω , is a subset of the power set $\mathcal{P}(\Omega)$, that is, a set of sets satisfying:

- 1 $\phi \in \mathcal{S}$, ϕ denotes the empty set;
- $2 A, B \in \mathcal{S}, \Longrightarrow A \cap B \in \mathcal{S};$
- 3 for all $A, A_1 \in \mathcal{S}$ and $A_1 \subseteq A$, there exists a sequence of pairwise disjoint sets $A_2, A_3, \dots A_N \subseteq \mathcal{S}$, such

$$A = \bigcup_{i=1}^{N} A_i.$$

Finite decomposition

Condition 3 is called *finite decomposition of A*.

Definition (Measure)

Let S be a semi-ring and let $\rho: S \to [0, \infty]$ be a pre-measure, i.e., ρ satisfy:

- 1 $\rho(\phi) = 0$;
- 2 for a finite decomposition of $A \in \mathcal{S}$, $\rho(A) = \sum_{i=1}^{N} \rho(A_i)$;

by Carathéodory's extension theorem, ρ is a measure on $\sigma(S)$, where $\sigma(S)$ is the smallest σ -algebra containing S.

Gartner et.al., shows that a kernel $k: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$ defined by $k(A, A') = \rho(A \cap A')$ is positive definite, where $\rho: \mathcal{S} \to [0, \infty]$ is a measure.

Gartner, Thomas. Kernels for structured data. Vol. 72. World Scientific, 2008.

Remark

Notation $\mathcal{F}_{\mathcal{S}}(\Omega)$ stands for the set of all fuzzy sets over Ω whose support belongs to \mathcal{S} , i.e.,

$$\mathcal{F}_{\mathcal{S}}(\Omega) = \{X \subset \Omega | \operatorname{supp}(X) \in \mathcal{S}\}.$$

where S is a semi-ring of sets on Ω

Remark

Notation $\mathcal{F}_{\mathcal{S}}(\Omega)$ stands for the set of all fuzzy sets over Ω whose support belongs to \mathcal{S} , i.e.,

$$\mathcal{F}_{\mathcal{S}}(\Omega) = \{X \subset \Omega | \operatorname{supp}(X) \in \mathcal{S}\}.$$

where ${\mathcal S}$ is a semi-ring of sets on Ω

Example

If $X \cap Y \in \mathcal{F}_{\mathcal{S}}(\Omega)$ then satisfy (finite decomposition):

$$\operatorname{supp}(X\cap Y)=\bigcup_{i\in I}A_i,\ A_i\in\mathcal{S},$$

where $\{A_1, A_2, \dots, A_N\}$. are pairwise disjoint sets

Example cont.

We can measure supp $(X \cap Y) = \bigcup_{i \in I} A_i, A_i \in S$ using the measure $\rho : S \to [0, \infty]$ as follows:

$$\rho(\operatorname{supp}(X\cap Y)) = \rho(\bigcup_{i\in I}A_i) = \sum_{i\in I}\rho(A_i),$$

Example cont.

We can measure supp $(X \cap Y) = \bigcup_{i \in I} A_i$, $A_i \in \mathcal{S}$ using the measure $\rho : \mathcal{S} \to [0, \infty]$ as follows:

$$\rho\big(\operatorname{supp}(X\cap Y)\big)=\rho(\bigcup_{i\in I}A_i)=\sum_{i\in I}\rho(A_i),$$

Adding fuzziness

The idea to include fuzziness is to weight each $\rho(A_i)$ by a value given by the contribution of the membership function on all the elements of the set A_i .

Definition

The intersection kernel on fuzzy sets is a function:

$$k_{\cap}: \mathcal{F}_{\mathcal{S}}(\Omega) \times \mathcal{F}_{\mathcal{S}}(\Omega) \to \mathbb{R}$$
, defined by:

$$k_{\cap}(X,Y) = \sum_{i \in I} (X \cap Y)(A_i)\rho(A_i), \tag{20}$$

where
$$(X \cap Y)(A) \equiv \sum_{x \in A} (X \cap Y)(x)$$

Guevara, Jorge, et.al. "Positive Definite Kernel Functions on Fuzzy Sets." Fuzzy Systems (FUZZ-IEEE), 2014.

Kernel k_{\cap} can be implemented via T-norm operators:

$$k_{\cap}(X,Y) = \sum_{i \in I} (X \cap Y)(A_i)\rho(A_i)$$
$$= \sum_{i \in I} \sum_{x \in A_i} (X \cap Y)(x)\rho(A_i)$$
$$= \sum_{i \in I} \sum_{x \in A_i} T(X(x), Y(x))\rho(A_i)$$

Some kernel examples for different T-norm operators **Examples**

_		
Kernel k_{\cap}		T-norm
$k_{\bigcap_{\min}}(X,Y) = \sum_{i \in I} \sum_{x \in A_i} \min(X(x))$	$(Y(x))\rho(A)$	minimum
$k_{\cap _pro}(X,Y) = \sum_{i \in I} \sum_{x \in A_i} X(x)Y(x)$	$)\rho(A)$	product
$k_{\bigcap_{k \in I} \sum_{i \in I} \sum_{x \in A_i} \max(X(x))}$	$(x) + Y(x) - 1,0)\rho(A)$	Łukasiewicz
$k_{\cap_{Dra}}(X,Y) = \sum_{i \in I} \sum_{x \in A_i} f(X(x),Y)$	$Y(x))\rho(A)$	Drastic

where f is defined as

$$f(X(x), Y(x)) = \begin{cases} X(x), & \text{if } Y(x) = 1\\ Y(x), & \text{if } X(x) = 1\\ 0, & \text{otherwise} \end{cases}$$

Lemma

$$k_{\min}(X, Y) = \sum_{i \in I} \sum_{x \in A_i} \min(\mu_X(x), \mu_Y(x)) \rho(A_i)$$
 is positive definite

Lemma

$$k_P(X, Y) = \sum_{i \in I} \sum_{x \in A_i} \mu_X(x) \mu_Y(x) \rho(A_i)$$
 is positive definite.

Lemma

$$k_{\min}(X, Y) = \sum_{i \in I} \sum_{x \in A_i} \min(\mu_X(x), \mu_Y(x)) \rho(A_i)$$
 is positive definite

Lemma

$$k_P(X, Y) = \sum_{i \in I} \sum_{x \in A_i} \mu_X(x) \mu_Y(x) \rho(A_i)$$
 is positive definite.

%membershipFunction(type, points)
K(X,Y)=sum(min(X(data(i,:)),Y(data(i,:))))

56 / 69

Definition

This kernel is a function $k_{nsk}: \mathcal{F}(\Omega) \times \mathcal{F}(\Omega) \to [0,1]$ defined by:

$$\begin{array}{rcl} k_{nsk}(X,Y) & = & \sup_{x \in \Omega} & \big(X \cap Y\big)(x) \\ & = & \sup_{x \in \Omega} \Big(T\big(X(x),Y(x)\big) \;\Big), \end{array}$$

where sup is the supremum.

Derived from non-singleton fuzzy systems.

Guevara, Jorge, et.al. "Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."

Examples Given $X=(X_1,\ldots,X_d,\ldots,X_D)$ and $Y=(Y_1,\ldots,X_d,\ldots,Y_D)$, such that: $X_d(.)=\exp\left(-\frac{1}{2}\frac{(.-m_d)^2}{\sigma_d^2}\right)$, where, $m_d\in\mathbb{R}$ amd $\sigma_d\in\mathbb{R}^+$, then, the following kernel

$$k_{nsk}(X,Y) = \prod_{d=1}^{D} \exp\left(-\frac{1}{2} \frac{(m_d - m'_d)^2}{\sigma_d^2 + (\sigma'_d)^2}\right),$$
 (21)

is a positive definite kernel.

Guevara, Jorge, et.al. "Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."

Examples Given $X=(X_1,\ldots,X_d,\ldots,X_D)$ and $Y=(Y_1,\ldots,X_d,\ldots,Y_D)$, such that: $X_d(.)=\exp\left(-\frac{1}{2}\frac{(.-m_d)^2}{\sigma_d^2}\right)$, where, $m_d\in\mathbb{R}$ amd $\sigma_d\in\mathbb{R}^+$, then, the following kernel

$$k_{nsk}^{\gamma}(X,Y) = \prod_{d=1}^{D} \exp\left(-\frac{1}{2} \frac{(m_d - m_d')^2}{\sigma_d^2 + (\sigma_d')^2 + \gamma}\right),$$
 (22)

is a positive definite kernel.

Guevara, Jorge, et.al. "Kernel Functions in Takagi-Sugeno-Kang Fuzzy System with Nonsingleton Fuzzy Input."

Guevara , Hirata , Canu , LXAI, NIPS-201

```
%sigmas
stdX
stdZ
%mus
X
[m,\sim]=size(X);
[p,\sim]=size(Z);
K=zeros(m,p);
for i=1:m
    for i=1:p
        diff=(X(i,:)-Z(i,:)).*(X(i,:)-Z(i,:));
        den=stdX(i,:).*stdX(i,:) + stdZ(j,:).*stdZ(j,:);
        K(i,j)=\exp(-0.5*sum(diff./den));
    end
end
```

Support Fuzzy-Set Machines

December 08, 2018

60 / 69

Distance-based kernels on fuzzy sets

Based on the concept of distance substitution kernels. Examples Kernel $K_D(X,X')=\exp(-\lambda D(X,X')^2)$, is PD when we use the following metric on fuzzy sets: $D(X,X')=\frac{\sum_{x\in\Omega}|X(x)-X'(x)|}{\sum_{x\in\Omega}|X(x)+X'(x)|}$.

Guevara, Jorge, et.al. "Fuzzy Set Similarity using a Distance-Based Kernel on Fuzzy Sets", 2016, Book Chapter, Handbook of Fuzzy Sets Comparison - Theory, Algorithms and Applications, pages 103-120

Outline

- Introduction
- 2 Kernel Machines
- Kernels on Fuzzy sets
- Support fuzzy-set machines

Definition (Support fuzzy-set machines)

Kernels machines with kernel gram matrix constructed by kernels on fuzzy sets.

Definition (Support fuzzy-set machines)

Kernels machines with kernel gram matrix constructed by kernels on fuzzy sets.

Support fuzzy-set machines learn $f = \sum_{i} \alpha_{i} k(X, i)$

Definition (Support fuzzy-set machines)

Kernels machines with kernel gram matrix constructed by kernels on fuzzy sets.

Support fuzzy-set machines learn $f = \sum_i \alpha_i k(X, i)$

Definition (Support fuzzy-sets)

Is the set given by all the fuzzy sets used in a kernel machine such the correspondent $\alpha_i > 0$.

Practical example on supervised classification on noisy data:

Table: Summary of the PIMA and SONAR attribute noise datasets

Dataset	%Noise	Dataset	%Noise
pima-5an-nn	5%		
pima-10an-nn	10%		
pima-15an-nn	15%		
pima-20an-nn	20%		
pima-5an-nc	5%		
pima-10an-nc	10%		
pima-15an-nc	15%		
pima-20an-nc	20%		

Pima, 768 observations, 35/65 class rate Sonar, 208 observations, 47/53 class rate

Algorithm 1 First fuzzification approach

Input:
$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$$

Output: $\mathcal{MF} = \{(x_i, X_1(x_i^1), \dots, X_D(x_i^D), y_i)\}_{i=1}^N$
for each class y_i do
for $d=1$ to D do
 $q_1, q_2, q_3 = quantile(x_{1 \le i \le N}^d, (0.25, 0.5, 0.75))$
 $\mu_d = q_2$
 $\sigma_d = |q_3 - q_1|/(2 * \sqrt{2 * \log 2})$
 $X_d(.) = \exp(-0.5(. - \mu_d)^2/\sigma_d^2)$
end for

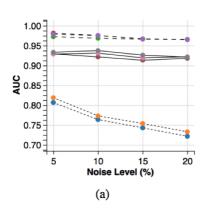
Algorithm 2 Second fuzzification approach

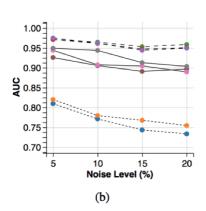
```
Input: \mathcal{D} = \{(x_i, y_i)\}_{i=1}^N
Output: \mathcal{MF} = \{(x_i, X_1(x_i^1), \dots, X_D(x_i^D), y_i)\}_{i=1}^N
for each class y_i do
for d=1 to D do
h = histogram(x_{1 \leq i \leq N}^d)
h = h/\max(h)
X_d(.) = linearInterpolation(h)
end for
```

Kernels used on the experiment

$k_{\times}(X,Y)$
$\sum xyX(x)Y(y)$
$x \in \text{supp}(X),$
$\sum_{y \in \text{supp}(Y)} \exp(\gamma \langle x, y \rangle) X(x) Y(y)$
$\sum_{x \in \text{supp}(X),} \exp(\gamma(x, y)) \lambda(x) Y(y)$
$y \in \text{supp}(Y)$
$\sum \exp(-\gamma \ x - y\ ^2) X(x) Y(y)$
$x \in \text{supp}(X),$ $y \in \text{supp}(Y)$

Table





Conclusions and next steps