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Outline

e Introduce a two-step approach aiming to train a generative model of natural
scenes

o Decouple frames content and time coherence by training one model for
each aspect
o Content quality is ensured by a generative model of frames

o Then a recurrent model is trained to “navigate” in the latent space yielding
time-coherent video samples

e Application of the proposed framework to reconstruct fast imaging data
o Ensure frame quality first

o Temporal coherence is learned later




Two-step generation of temporal data
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Two-step generation of temporal data

DCGAN-like

Fy F, Fy
| T
FG FG FG

Fully-connected
Encoder

BiLSTM

—




Training details

e Multiple discriminators settings with random projections are employed in
both training steps - details on next slide
o Easier to find a working set of hyperparameters
o More diverse generated samples

e DCGAN:-like discriminator was used for FG training, along with a variation
with 3-dimensional convolutions for training the sequence model

e RMSprop in general yielded better results than Adam in both cases




Multiple discriminator training

e Neyshabur et al. (2017) introduced the use of multiple random projections

e Overlap between fake and real samples is larger in a randomly projected lower
dimensional space

e The distribution induced by the generator approximates the real data
distribution with a sufficiently large number of projections
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Experiments

e Bouncing balls dataset with 3 balls

e 50000 x 40 training scenes

e Frames generator is trained against 48 discriminators for 50
epochs

o Random frames are selected on the fly

e The sequence generator is then trained against 16
discriminators




Experiments - Frames generator samples

Bouncing balls dataset with 3
balls

50000 x 40 training samples

Trained against 48
discriminators for 50 epochs




Experiments - Sequence generator samples

e Generated samples with 30 frames
e 16 discriminators with spatial random projections
e 3D convolutions DCGAN-like discriminator
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Replacing the frames generator

e \We replaced the frames generator by one trained with 1
ball

e Some of the physics still holds, and frame transitions are
smooth




What is the video generator learning?
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The video generator learns to
“lump” across the latent
space rather than simply
linearly interpolating




Learning to reconstruct® - simulating samples
from fast imaging
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*Collaboration with Prof. Jinyang Liang

Fast imaging systems record video at ultra-high frame rate -
see Gao, Liang, et al. "Single-shot compressed ultrafast
photography at one hundred billion frames per second.”
Nature 516.7529 (2014): 74.

Sensed images are noisy and sparse low dimensional
versions of actual scenes

Reconstruction is computationally expensive

Can the reconstruction phase be learned by a Neural
Network?

o Expensive offline training. Fast at test time

o Can be done in batch mode, with GPU support.
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First trial - Direct reconstruction
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First trial - Direct reconstruction
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Reconstructed samples

e Training scheme:
o Offline transformation of real :
scenes to look like sensed images :
o Neural net is trained with
transformed/real pairs (400k pairs):

e Experiments with synthetic data:
o Conventional MSE minimization " Real samples
leads to blurry samples :
o Adversarial loss adds artifacts
(Fully convolutional DCGAN-style
discriminator) and has low diversity




Two-step framework
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Reconstructed samples

Original scenes Sensed Images Reconstruction




Future work

e Other training strategies:
o Let the frame generator continue training while the video
generator is trained
o Try different regularization strategies to enforce smooth frame
transitions

e Scale to realistic data

e Evaluate objective quality metrics




Thank you!




