

Generating videos by traversing image manifolds learned by GANs

João Monteiro, **Isabela Albuquerque**, and Tiago Falk Institut National de la Recherche Scientifique - Montréal isabela.albuquerque@emt.inrs.ca

Outline

- Introduce a two-step approach aiming to train a generative model of natural scenes
 - Decouple frames content and time coherence by training one model for each aspect
 - Content quality is ensured by a generative model of frames
 - Then a recurrent model is trained to "navigate" in the latent space yielding time-coherent video samples
- Application of the proposed framework to reconstruct fast imaging data
 Ensure frame quality first
 - Temporal coherence is learned later

Two-step generation of temporal data

- 1. A frames generator (FG) is trained in advance to generate individual frames
- 2. A second model will be trained to navigate the manifold induced by FG

Two-step generation of temporal data

Training details

- Multiple discriminators settings with random projections are employed in both training steps - details on next slide
 - Easier to find a working set of hyperparameters
 - More diverse generated samples
- DCGAN-like discriminator was used for FG training, along with a variation with 3-dimensional convolutions for training the sequence model
- RMSprop in general yielded better results than Adam in both cases

Multiple discriminator training

- Neyshabur et al. (2017) introduced the use of multiple random projections
- Overlap between fake and real samples is larger in a randomly projected lower dimensional space
- The distribution induced by the generator approximates the real data distribution with a sufficiently large number of projections

Experiments

- Bouncing balls dataset with 3 balls
- 50000 x 40 training scenes
- Frames generator is trained against 48 discriminators for 50 epochs
 - Random frames are selected on the fly
- The sequence generator is then trained against 16 discriminators

Experiments - Frames generator samples

- Bouncing balls dataset with 3 balls
- 50000 x 40 training samples
- Trained against 48 discriminators for 50 epochs

Experiments - Sequence generator samples

- Generated samples with 30 frames
- 16 discriminators with spatial random projections
- 3D convolutions DCGAN-like discriminator

Replacing the frames generator

- We replaced the frames generator by one trained with 1 ball
- Some of the physics still holds, and frame transitions are smooth

												٠																	
	•	•	•	•		•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	٠	•	٠	•
•	•	•	٠	٠	•	٠	•	٠	•	٠	•	•	•	٠	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•

What is the video generator learning?

- 2D Isomap of generated sequences of latent variables
- The video generator learns to "jump" across the latent space rather than simply linearly interpolating

Learning to reconstruct* - simulating samples from fast imaging

- Fast imaging systems record video at ultra-high frame rate see Gao, Liang, et al. "Single-shot compressed ultrafast photography at one hundred billion frames per second." Nature 516.7529 (2014): 74.
- Sensed images are noisy and sparse low dimensional versions of actual scenes
- Reconstruction is computationally expensive
- Can the reconstruction phase be learned by a Neural Network?
 - Expensive offline training. Fast at test time
 - Can be done in batch mode, with GPU support.

*Collaboration with Prof. Jinyang Liang - INRS-EMT

First trial - Direct reconstruction

First trial - Direct reconstruction

Reconstructed samples

- Training scheme:
 - Offline transformation of real scenes to look like sensed images
 - Neural net is trained with transformed/real pairs (400k pairs)
- Experiments with synthetic data:
 - Conventional MSE minimization leads to blurry samples
 - Adversarial loss adds artifacts (Fully convolutional DCGAN-style discriminator) and has low diversity

Reconstructed samples

Original scenes

Sensed Images

Reconstruction

Future work

- Other training strategies:
 - Let the frame generator continue training while the video generator is trained
 - Try different regularization strategies to enforce smooth frame transitions
- Scale to realistic data
- Evaluate objective quality metrics

Thank you!