

CARER: Contextualized Affect Representations for Emotion Recognition

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, Yi-Shin Chen

Latinx in Al Coalition @ NeurIPS, Montreal, Canada, 2018 National Tsing Hua University, Taiwan

Emotion Analysis

Task: To detect the *fine-grained emotions* expressed in textual information.

Challenge: Emotions are communicated using a *variety of linguistic phenomena* due to social and cultural differences: slang, emoticons, abbreviations, etc.

Discovering Emotional Language

Due to linguistic variability, we need a robust method that properly models and captures both *contextual* and *implicit* emotional information

"Thanks God for everything" "thanks goodness for a great team .. "

"thanks fro all the continued support and prayers gotta keep working hard!!"
"Thanks for all the tweets... onto the next path now."

"Thanks mom for waaaaking me two hours early. Can't get asleep now." "thanks dad i can always count on u to mess up my day"

Graph-Based Pattern Extraction

Are Graph-Based Emotion Patterns Enough?

Joy Pattern: "thanks *"

"Thanks God for everything"

"thanks goodness for a great team .. "

"thanks fro all the continued support and prayers gotta keep working hard!!" "Thanks for all the tweets... onto the next path now."

"Thanks mom for waaaaking me two hours early. Can't get asleep now."

"thanks dad i can always count on u to mess up my day" Wildcards (i.e., *) are helpful for preserving structure and generalizing **but cannot preserve semantic relationships**

Objectives

- Build an automatic graph-based algorithm for emotion-relevant feature extraction
- Construct contextualized representations that preserve semantic relationships
- Analyse model for robustness and explainability given the proposed representations

Methodology

→ Building Syntactic Patterns
 → Contextualizing Patterns
 → Representation Learning

Pattern Refinement & Enrichment

Step 1: Cluster Word Embeddings

Mikolov et al., 2013

Goal:

- Model words using Word2Vec
- Cluster words based on similarity measure
- Antonyms are close due to similar context

So its **badness** would be ... would its **goodness** be revealed... ... about the **badness** of human. **Goodness** of a human ...

Step 2: Update Word Embeddings

Step 3: Preserving semantic relationship

Pattern	Text	Contextualized Pattern	C#21 bad badness
thanks *	"thanks god " "Thanks goodness" "Thanks goooodness "	thanks C#58	C#58 goodness heaven goooodness god lord heavens
	"thanks your "	thanks C#90	your you dad mom
	"thanks <mark>mom</mark> " "thanks <mark>mum</mark> "	thanks C#28	ur C#90 C#28

Input: Contextualized Patterns

"Thanks mom for waaaaking me two hours early. Can't... "

CNN-Based Emotion Recognition Model

- CNN-based (multilayer)
- Zero padding
- Pattern scores as embedding vectors
- Two filter sizes for features with different length

Experiments

Emotion Recognition for English Short Texts

Experimental Setup: Dataset

- Crawl English tweets
 - Annotated via distant supervision
 - Total 339 hashtags corresponding to the eight emotions
- Refining process (Abdul et al., 2017)
 - 0.66M tweets in total

Emotion	Amount	Hashtags			
sadness	214,454	#depressed, #grief			
јоу	167,027	#fun, #joy			
fear	102,460	#fear, #worried			
anger	102,289	#mad, #pissed			
surprise	46,101	#strange, #surprise			
trust	19,222	#hope, #secure			
disgust	8,934	#awful, #eww			
anticipation	3,975	#pumped, #ready			

Experimental Results: 8 Emotions Task

	Model	Feature	anger	antici- pation	dis- gust	fear	јоу	sad- ness	sur- prise	trust	F1-avg
Traditional Methods	BoW	word freq.	0.53	0.08	0.17	0.53	0.71	0.60	0.36	0.33	0.57
	N-gram	word freq.	0.56	0.09	0.17	0.57	0.73	0.64	0.42	0.39	0.61
	char	char. freq.	0.35	0.03	0.04	0.20	0.51	0.46	0.10	0.12	0.37
Lexica-based	LIWC	affect lexicons	0.35	0.03	0.11	0.30	0.49	0.35	0.18	0.19	0.35
State-of-the-Art Methods	CNN _{sw2v}	s-word embed.	0.57	0.10	0.15	0.63	0.75	0.64	0.61	0.70	0.65
	EmoNet	word embed.	0.36	0.00	0.00	0.46	0.69	0.61	0.13	0.25	0.52
	FastText	word embed.	0.57	0.01	0.01	0.65	0.77	0.71	0.50	0.54	0.66
	DeepMoji	word embed.	0.60	0.00	0.03	0.49	0.75	0.67	0.20	0.27	0.59
Baseline and our work	CNN _{EP}	EmoPattern	0.65	0.10	0.22	0.64	0.73	0.56	0.15	0.08	0.52
		cont. patt.‡	0.61	0.31	0.34	0.67	0.75	0.68	0.60	0.55	0.67
	CARER	cont. patt.	0.74	0.41	0.43	0.79	0.83	0.82	0.76	0.75	0.79

Note: CARER uses a recent dataset and fewer pattern templates (details in paper)

Emotion Recognition (8 emotions)

What's Captured by CARER?

Our proposed method can grasp emotional cues in cases of *short text*, *rare words* and *mixed emotions*

Case	Document	Label	DeepMoji	EmoNet	CARER	Contextualized Pattern
Short text	damn what a <u>night</u>	јоу	surprise	sadness	јоу	what a { night, day, rush, pass }
Rare words	got <u>thee</u> worst sleep ever	anger	sadness	sadness	anger	got { <u>thee,</u> madd, thatt, bacc}
Mixed emotions	what the h**k is going on !?	fear	anger	sadness	fear	is { going, ends, finishes}

Conclusion

- We proposed **contextualized affect representations** for improving emotion recognition
- In the future, we anticipate a comprehensive study of how contextualized patterns can be adapted to other **emotion-related tasks**

References

- Elvis Saravia, Carlos Argueta, and Yi-Shin Chen. "Unsupervised graph-based pattern extraction for multilingual emotion classification." Social Network Analysis and Mining, 2016.
- ✤ J. Deriu, et al. "Swisscheese at semeval-2016 task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision." Procs. of SemEval, 2016.
- Abdul-Mageed, et al., "Emonet: Fine-grained emotion detection with gated recurrent neural networks." Procs. of ACL, 2007.
- Felbo, Bjarke, et al. "Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm." arXiv preprint arXiv:1708.00524, 2017.
- Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. *Enriching word vectors with subword information*. Transactions of the Association for Computational Linguistics, 2017.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781, 2013