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Model Cards: A Proposal

Model Cards is a framework that
serve to disclose information
about a trained machine learning
model.

Example Model Card - Toxicity in Text

Model Details

Developed by Jigsaw in 2017 as a convolutional neural network trained to
predict the likelihood that a comment will be perceived as toxic.

Intended Use

Supporting human moderation, providing feedback to comment authors,
and allowing comment viewers to control their experience.

Factors

Identity terms referencing frequently attacked groups focusing on the
categories of sexual orientation, gender identity and race.

Metrics

Pinned AUC, which measures threshold-agnostic separability of toxic and
non-toxic comments for each group, within the context of a background
distribution of other groups.

Evaluation
Data

A synthetic test set generated using a template-based approach, where
identity terms are swapped into a variety of template sentences.

Training Data

Includes comments from a variety of online forums with crowdsourced
labels of whether the comment is “toxic”. “Toxic” is defined as, “a rude,
disrespectful, or unreasonable comment that is likely to make you leave a
discussion”.

Ethical
Considerations

A set of values around community, transparency, inclusivity, privacy and
topic-neutrality to guide their work.

Caveats

Synthetic test data covers only a small set of very specific comments.
While these are designed to be representative of common use cases and
concerns, it is not comprehensive.

Quantitative
Analysis

Pinned AUC Toxicity Scores (Version 1)
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Model Details, Intended Use & Factors

Example Model Card - Toxicity in Text

Developed by Jigsaw in 2017 as a convolutional neural network trained to

etz Dl predict the likelihood that a comment will be perceived as toxic.

Supporting human moderation, providing feedback to comment authors,

Intended Use . . . .
and allowing comment viewers to control their experience.

Identity terms referencing frequently attacked groups focusing on the

FIRLIE categories of sexual orientation, gender identity and race.




Metrics, Evaluation Data & Training Data

Metrics

Pinned AUC, which measures threshold-agnostic separability of toxic and
non-toxic comments for each group, within the context of a background
distribution of other groups.

Evaluation Data

A synthetic test set generated using a template-based approach, where
identity terms are swapped into a variety of template sentences.

Training Data

Includes comments from a variety of online forums with crowdsourced
labels of whether the comment is “toxic”. “Toxic” is defined as, “a rude,
disrespectful, or unreasonable comment that is likely to make you leave a

discussion”.




Ethical Consideration & Caveats

Ethical
Considerations

A set of values around community, transparency, inclusivity, privacy and
topic-neutrality to guide their work.

Caveats &
Recommendations

Synthetic test data covers only a small set of very specific comments.
While these are designed to be representative of common use cases and
concerns, it is not comprehensive.




Quantitative Analysis

Quantitative
Analysis

Pinned AUC Toxicity Scores (Version 1)
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Discussion

Responsible Al

We propose Model Cards as a
step towards the responsible
democratization of machine
learning and related Al
technology, intended to be
applicable across different
institutions, contexts, and
stakeholders.

Refine Framework

Usefulness and accuracy of a
model card relies on the
integrity of the card creator(s).
Future work will aim to refine
this framework by studying how
model information is interpreted
and used by different
stakeholders.

Other Transparency Methods

Similar work has begun for
datasets and Al services (e.g.,
Datasheets for Datasets,

Nutrition Labels for ML Datasets,

IBM’s Factsheets for Al

Services). Worth exploring how

Model Cards can strengthen and
complement other transparency
methods.
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What's Next?

Model Cards for Model Reporting

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben

Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, Timnit Gebru
{mmitchellai,simonewu,andrewzaldivar,parkerbarnes,lucyvasserman,benhutch,espitzer,tgebruj@google.com

Accepted at ACM Conference on Fairness, Accountability,
and Transparency

Poster Presentations at Women in Machine Learning,
Black in Al & LatinX in Al Workshops, NeurlPS 2018

https://arxiv.org/abs/1810.03993



https://www.google.com/url?q=https://arxiv.org/abs/1810.03993&sa=D&ust=1544047224385000&usg=AFQjCNGcj1ce26eLFdh73cr3VeFwhjjytA

L e a r I l M O r e L] The following cell define a function that uses the sklearn.metrics.confusion_matrix module to calculate all the instances (true positive, true negative, false

positive, and false negative) needed to compute our binary confusion matrix and evaluation metrics.

[ 1 Define Function to Ct

pute Binary C¢ ion Matrix Metrics

e Binary confusion matrix and evaluation metrics defined.

We will also need help plotting the binary confusion matrix. The function below combines various third-party modules (pandas DataFame, Matplotlib, Seaborn) to
draw the confusion matrix.

[51] Define Function to Visualize Binary Confusion Matrix

e Binary confusion matrix visualization defined.

M | \ . L [ C I |
Now that we have all the necessary functions defined, we can now compute the binary confusion matrix and evaluation metrics using the outcomes from our deep
( O l I r S e neural net model. The output of this cell is a tabbed view, which allows us to toggle between the confusion matrix and evaluation metrics table.

FairAware Task #4

W |t h Te n S O r F I OW A Pl S Use the form below to generate confusion matrices for the two gender subgroups: Female and Male. Compare the number of False Positives and False Negatives
for each subgroup. Are there any significant disparities in error rates that suggest the model performs better for one subgroup than another?

[65] Visualize Binary Confusion Matrix and Compute Evaluation Metrics Per Subgroup

Google's fast-paced, practical introduction to machine learning

CATEGORY: ' gender

Male

START CRASH COURSE VIEW PREREQUISITES @ INFO:tensorflow:Calling model fn.

INFO:tensorflow:Done calling model fn.

INFO:tensorflow:Graph was finalized.

INFO:tensorflow:Restoring parameters from /tmp/tmp5a34Fy/model.ckpt-1000
INFO:tensorflow:Running local init op.

INFO:tensorflow:Done running local init op.

Confusion Matrix ion Metrics

Precision Recall False Positive Rate False Omission Rate
0.7315 0.5062 0.0834 0.1947

Solution

Click below for some insights we uncovered

developers.google.com/machine-learning/crash-course/fairness/

Google
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