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Abstract. We propose a patch sampling strategy based on a sequen-
tial Monte-Carlo method for high resolution image classification in the
context of Multiple Instance Learning. When compared with grid sam-
pling and uniform sampling techniques, it achieves higher generalization
performance. We validate the strategy on two artificial datasets and two
histological datasets for breast cancer and sun exposure classification.
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1 Introduction

Deep learning is widely used for image classification with great success [4] [9].
However, neural networks can not be directly applied to very high resolution
images, such as Whole Slide Tissue images, due to the high computational cost
involved. A common solution consists in dividing the image into patches and
using patch-level annotations to train a supervised classifier. However, patch-
level annotations are not usually available, especially when working with medical
datasets. On the contrary, image-level annotations are much easier to obtain so
practitioners have used Multiple Instance Learning (MIL) to train patch-level
classifiers in a weakly supervised manner, aggregating patch-level predictions
into image-level scores [10] [5] [7] [6].

When the input images are small enough, the MIL formulation can be imple-
mented using a global Max Pooling layer at the output of a Fully Convolutional
Network [8]. However, in the case of high resolution images, this implementation
is not possible due to memory constraints. This is why patches are usually sam-
pled using a regular grid (with or without overlap) [5] [2] before being fed to the
neural network. Grid sampling may skip some zones in the image which might
be relevant for classification, and concentrate too much effort in zones which are
not. In this work we propose a novel patch sampling strategy which extracts
knowledge from the network to focus attention on the most discriminative re-
gions in an image for a given instant in the training process, permitting better
convergence and higher generalization performance. We compare this approach
to uniform sampling and conventional grid sampling on two artificial and two
histological datasets.
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2 Materials and methods

2.1 Multiple Instance Learning

The Multiple Instance Learning formulation permits training a patch-based clas-
sifier with only image-level annotations, aggregating patch level predictions into
image-level scores.

Multiple Instance Learning is a type of weakly supervised learning algorithm
where training data is arranged in bags, where each bag contains a set of in-
stances X = {x1, x2, ..., xM}, and there is one single label Y per bag, Y ∈ {0, 1}
in the case of a binary classification problem. It is assumed that individual la-
bels y1, y2, ..., yM exist for the instances within a bag, but they are unknown
during training. In the standard Multiple Instance assumption (SMI), a bag is
considered negative if all its instances are negative. On the other hand, a bag is
positive, if at least one instance in the bag is positive [11].

The MIL formulation has been often used to solve the problem of high resolu-
tion image classification. An image (bag) is divided into M patches (instances),
and the patches pertaining to the same image are treated jointly in the classifier.
If an image is positive (Y = 1), it will contain at least one positive patch (ym = 1
at least for one m). On the contrary, if the image is negative (Y = 0), all its
patches will be negative (ym = 0 for all m). Then, the max operator can be used
to aggregate patch predictions to obtain an image-wise score: Ŷ = maxm(ŷm),
where ŷm is the prediction for patch m. When using this aggregating function,
the weights of the network will be updated with the information of only one
patch per image. Other less strict aggregating functions have been proposed in
the literature [10] [6] [11], which use not only the highest scoring patch but an
aggregation of more than one patch prediction per image.

2.2 Patch sampling

Since the neural network will use a small subset of patches to update its weights
at every iteration, it is important to select an adequate sampling strategy. The
traditional grid-sampling strategy, a sampling strategy based on a uniform ran-
dom variable, and a novel sampling strategy based on sequential Monte Carlo
methods are reviewed in this section.

Grid sampling: The extraction of patches is performed in a grid-like manner;
the image is divided into a regular grid of patches, with or without overlap.
Given that the sampling is performed only once in the whole training process,
grid sampling is the fastest sampling strategy. However, the subset of patches
to train will be the same throughout the epochs. Also, this strategy will sample
patches from not discriminative regions in the image even after the network has
learned that they are not relevant for classification.
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Uniform sampling: A uniform distribution is applied to select the patches
used to train the neural network at every epoch. This means that the neural
network will see a different subset of patches every time the image goes through
the training loop. As the number of training epochs increases, the network will
tend to see all possible patches from every image. Nevertheless, this approach
will sample patches from irrelevant regions in the image even after they have
been learned to be non-discriminative.

Monte-Carlo sampling: The objective of this sampling strategy is to concen-
trate the effort on the most relevant regions of a high resolution image. When a
new image is fed into the network, its output probability map is estimated using
a variation of a sequential Monte-Carlo method. New patches are obtained from
regions around high activations in the output probability map.

1. Initialization: n image points are sampled following a uniform distribution.
2. Evaluation: a patch centered on each point is sampled and forwarded through

the network. The output produced by the patch is used to represent the
point.

3. Normalization: the point scores are re-scaled between 0 to 1. The points
whose value is closer to 1 will be the ones corresponding to patches which
have obtained the highest output from the neural network.

4. Re-sampling: the lowest scoring points are removed, and (the same number
of) new points are re-sampled on top of the ones which have a higher score.
This re-sampling step can be done deterministically (re-sampling the l lowest
scoring points) or stochastically (using a random uniform distribution).

5. Displacement: the new points are slightly displaced according to a random
2D Gaussian distribution.

6. Go to step 2 for k iterations

The proposed method relocates patches which have not been relevant for
classification into more discriminative regions in the image, that is, around the
patches with higher activations. This process is performed at every batch, since
the discriminative regions in the image will vary as the network learns during
the training process.

3 Experiments

3.1 Datasets

Artificial datasets: Two binary artificial datasets named MNIST-Sparse and
MNIST-Clustered have been created to test the performance of the various sam-
pling algorithms. Each image of 1024x1024 pixels consists of an aggregation of
28x28 images from the MNIST dataset. A positive image contains at least one
MNIST digit corresponding to the class ’9’, while a negative image contains only
digits corresponding to the other classes (’0’ to ’8’). Digit ’9’ has been chosen
because it can be mistaken for ’4’ or ’5’ [6].



4 M. Combalia and V. Vilaplana

The purpose of these datasets is to imitate two different distributions found in
histological images. The MNIST-Sparse dataset has the relevant regions (where
the target number is localized) spread through the image. On the contrary, the
MNIST-Clustered dataset has the target patches concentrated in space. The
training and test subsets contain 1000 and 400 images, respectively. Figure 2
shows examples extracted from the two datasets, where the target digits ’9’
have been highlighted using red squares.

(a) (b)

Fig. 1. Images extracted from MNIST-Sparse dataset (a) and MNIST-Clustered
dataset (b). Target numbers (9) are marked with red squares in both images

Histological datasets: The sampling strategies are also evaluated on two his-
tological datasets: the ICIAR Grand Challenge 2018 dataset Part A [1], and the
Skin subset of the GTEx dataset [3].

The ICIAR dataset is formed by 400 breast microscopy tissue images divided
in 4 different classes: normal, benign, invasive and in-situ carcinoma. For each
class, there are 100 different Hematoxylin & Eosin stained images with a dimen-
sion of 2048 x 1536 pixels. The images are in RGB color space. We use benign
and invasive classes to create a binary problem on which to test the algorithms,
which results in 160 images for training and 40 for test. The images have already
been pre-cropped from labeled Whole Slide Tissue images, and hence, from a
MIL perspective, a large number of patches (instances) that we extract from an
image (a bag) are expected to be consistent with the image label.

The Skin subset of the GTEx dataset is composed of approximately 10000
pieces of skin, which correspond to sun-exposed and not sun-exposed tissues. The
smallest slide available (8 microns per pixel) is used to train the neural networks.
The training and test splits contain 8000 and 2000 images, respectively.
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(a) (b) (c)
(d)

Fig. 2. Images extracted from the ICIAR Part A Dataset for benign (a) and invasive
(b) classes; and the GTEx Skin dataset for the sun-exposed (c) and not-sun-exposed
(d) classes.

3.2 Results

A VGG-like architecture [9] with a receptive field of 40x40 pixels is trained
to evaluate the performance of the sampling algorithms on the MNIST-Sparse
and MNIST-Clustered datasets. A higher capacity neural network based on the
ResNet [4] architecture is used in the ICIAR Part A and GTEx Skin datasets
with a receptive field of 224x224, since these datasets are more challenging than
the MNIST toy example.

Patches are extracted without overlap for the grid sampling strategy, and the
same number of patches/points is used for the uniform and Monte-Carlo training
strategies. This results in a total of 625 patches per image for the MNIST dataset
and 54 patches per image for the ICIAR dataset. The number of patches in
the case of the GTEx dataset is variable since images have different sizes. One
iteration is used on the Monte-Carlo algorithm every time the images go through
the training loop, as it was found to be enough to perform a correct estimation
of the output probability map of an image.

Patch scores are aggregated using the max operator into an image-level score
for the MNIST and the GTEx Skin datasets, since relevant information is ex-
pected to be very localized in space. On the other hand, the Top-K (with K =
10) aggregating function is used in the ICIAR Part A dataset, since patches are
expected to be consistent with the label of the image. The Top-K function will
use the top K scoring instances in a bag to obtain the bag-level prediction.

The neural networks are trained with Adam optimization. Grid sampling
with 50 % overlap is used to sample patches from the images at test time, and
the max function is used to aggregate patch scores into image-wise predictions.
The accuracy results on the test set for each sampling strategy are shown in
Table 1 and the train and validation accuracy curves for the MNIST-Sparse and
MNIST-Clustered datasets are presented in Figures 3 and 4, respectively.

4 Discussion

Figures 3 and 4 illustrate how the sampling strategy used for training can have
a very large impact on the final performance of the neural network. This is es-
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Table 1. Test accuracies for the various sampling strategies on the MNIST-Sparse,
MNIST-Clustered, ICIAR Part A and GTEx Skin datasets

Test accuracy MNIST Sparse MNIST Clust ICIAR PartA GTEx Skin

Grid sampling 0.520 ± 0.01 0.523 ± 0.01 0.776 0.826
Uniform sampling 0.759 ± 0.03 0.83 ± 0.01 0.790 0.920

Monte-Carlo sampling 0.825 ± 0.02 0.852 ± 0.03 0.847 0.942

Fig. 3. Train and validation accuracy on the MNIST-Sparse dataset for the proposed
sampling strategies: grid (left), uniform (center), Monte-Carlo (right).

Fig. 4. Train and validation accuracy on the MNIST-Clustered dataset for the proposed
sampling strategies: grid (left), uniform (center), Monte-Carlo (right).

pecially true in cases where the receptive field of the network is small compared
to the spatial extension of the discriminative features, as it is on the MNIST-
Sparse and MNIST-Clustered datasets, where target digits are patches of 28x28
pixels and clusters of 40x40 pixels, respectively. In these cases, the grid sampling
technique would need a very large overlap between patches to provide a good
subset of patches to the network, which would result in a substantial increase in
training time. While the neural network trained with the grid sampling strategy
is unable to learn the true distribution of the data, the stochastic nature of the
uniform and Monte-Carlo sampling strategies permits seeing a different subset
of patches at every epoch. This allows the network to correctly find the discrim-
inative regions on the image. In addition, once the network has learned which
regions in the image are the relevant ones, the Monte-Carlo strategy samples
only from these regions. This results in a higher validation accuracy, especially
in the MNIST-Clustered dataset.

Figure 5 shows the output probability maps of one positive image from
the MNIST-Clustered database for each sampling strategy. The neural network
trained with the grid sampling strategy fails to localize the target digit; the patch
with the maximum score contains a ’4’. On the other hand, the neural networks
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trained with the stochastic sampling strategies succeed activating on the regions
containing the target digit ’9’. The Monte-Carlo sampling strategy produces a
more accurate map.

The stochastic sampling approaches outperform the grid sampling also on the
histological datasets. This time, however, the neural networks trained with the
grid sampling strategy perform correctly. In this case the neural networks have
a larger receptive field, and the discriminative image regions are smaller com-
pared to the receptive field. However, the neural networks still benefit from the
Monte-Carlo training strategy, which focuses on the relevant regions, improving
accuracy. Figure 6 shows how the distribution of samples in the Monte-Carlo ap-
proach changes as the neural network learns. In the first epochs, the Monte-Carlo
strategy behaves very similarly to the uniform sampling strategy. However, as the
network keeps learning, the Monte-Carlo sampling strategy further concentrates
its effort on the discriminative regions.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5. Input image (a), output probability map for grid sampling (b), uniform sam-
pling (c) and Monte-Carlo sampling (d). Figures (e), (f) and (g) show the maximally
activated patch for grid, uniform and Monte-Carlo sampling, respectively.

Fig. 6. Black points correspond to points sampled with Monte-Carlo at epochs 2,
6, 8 and 37 during the training process of the neural network for the sun-exposure
classification problem.
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5 Conclusions

In this paper we have shown that a simple grid sampling technique can compro-
mise the performance of a network, especially when its receptive field is small
compared to the size of the relevant features in the image. We have proposed a
sampling strategy based on a sequential Monte-Carlo method for high resolution
images which samples from the most relevant regions during the training process,
overcoming the problems of grid sampling. We have illustrated its capabilities
on two artificial and two histological datasets for breast cancer and sun exposure
classification.
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