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Markov Chain Monte Carlo (MCMC) simulation is a family of stochastic algorithms that are commonly
used to approximate probability distributions by generating samples. The aim of this proposal is to deal
with the problem of doing that job on a large scale because due to the increasing power computational
demands of data being tall or wide, a study that combines statistical and engineering expertise can be made
in order to achieve hardware-accelerated MCMC inference. In this work, I attempt to advance the theory
and practice of approximate MCMC methods by developing a toolbox of distributed MCMC algorithms, and
then a new method for dealing with large-scale problems will be proposed, or else a framework for choosing
the most appropriate method will be established. Papers like [1] provide a comprehensive review of the
existing literature regarding methods to tackle big data problems. My idea is to tackle divide and conquer
approaches since they can work distributed in several machines or else Graphics Processing Unit (GPUs),
so I cover the theory behind these methods; then, exhaustive experimental tests will help me compare and
categorize them according to their limitations in wide and tall data by considering the dataset size n, sample
dimension d, and number of samples T to produce.

1 MCMC for big data

MCMC is a method for approximating probability distributions of variables, and it is among many, the
most popular because it normally provides both precise and pretty fast results. The most common methods
for both probabilistically finding parameters θ and latent variables z are shown in the table below [2] that
suggests that there are commonly two popular ways to do approximation: variational inference and Monte
Carlo. Besides MCMC being slow for big data, methods like Metropolis Hastings generate correlated sam-
ples and are deficient when working with multi-modal distributions [3].

Accurate Full Bayesian inference p(z, θ | X ) Slow

Variational inference: mean field q(z)q(θ) ≈ p(z, θ | X )

MCMC zi, θi ∼ p(z, θ | X )

Expectation maximization q(z), θ = θMAP

Variational EM: mean field q1(z1), . . . , qd(zd), θ = θMAP

Inaccurate MCMC EM zi ∼ p(z | θ,X ), θ = θMAP Fast

However, because Monte Carlo is more precise, then there are essentially two approaches to make it fast
as well when dealing with big data in the literature: divide and conquer and subsampling-based. Divide
and conquer approaches divide the initial dataset, run MCMC separately, and then combine results to obtain
an approximation of the posterior while subsampling approaches simply aim at reducing the number of
individual data point likelihood evaluations necessary at each iteration of the MCMC algorithm [1].
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2 Large-scale MCMC

The general idea is to split the data X of size n across many machines, which is the divide and conquer
approach. The data can be divided into S conditionally independent batches/data subsets x1, . . . ,xS , and
one can run separate MCMC chains on each machine, and finally combine all the MCMC draws p (θ|X ) ∝∏S

s=1 p(xs|θ)p(θ)1/S where p(θ) =
∏S

s=1 p(θ)
1/S to preserve the total prior. The time complexity to

produce T samples on each subposterior p(θ|xs) would be O(Tn/S), which is common to all divide-and-
conquer MCMC algorithms [4], and it seems to be O(dTn/S) when producing d-dimensional samples.
At any rate, a question that arises is how to combine draw samples from different subposteriors, and some
methods are minimally described below.

• A method called Consensus Monte Carlo assumes that each subposterior p(θ|xs) ∼ N(µs,Ωs). Then
p (θ|X ) ∝

∏S
s=1 p(θ|xs) = N(µ,Ω), and the proposal from [5] is to weight the averages of the

subposterior draws.

• In [6], a kernel-based way to combine subposterior samples is proposed, and it also compares its
performance with Consensus Monte Carlo.

• Finding the geometric median of subset posterior distributions is another method [7]. The algorithm
consists of running MCMC on scaled subposteriors and returning a median subposterior of the S
subposteriors. This median has two advantages: it provides a better approximation of the full posterior
than the individual subposteriors, and it is more resistant to outliers.

• Combining subposteriors using Gaussian Processes (GPs) is a more recent idea. In [4], the authors
first run an MCMC method on each subposterior and obtain draws θ(i)s and log p(θ

(i)
s |xs) evaluations

for i = 1, . . . , I , which is an arbitrary set of size I .

Ds =
{
θ(1:I)s , log p(θ(1:I)s |xs)

}
.

Then, a noise-free GP regression is fit to Ds with response log p(θ
(1:I)
s |xs). The predictive dis-

tribution for the log subposterior at a new set of parameter values θ(1:J) is log ps(θ
(1:J))|Ds ∼

GP
(
µs(θ

(1:J)),Σs(θ
(1:J))

)
. Finally, a sum of subposterior GPs approximates the full data log p(θ|y)

log p(θ(1:J)|x)|D ∼ GP

(
S∑

s=1

µs(θ
(1:J)),

S∑
s=1

Σs(θ
(1:J))

)

• In that same paper [4], a variant of the Metropolis Hastings algorithm is used. It is the popular No-U-
Turn Sampler (NUTS) sampler, which is an adaptively tuned Hamiltonian Monte Carlo (HMC), and
a GP-HMC sampler is proposed for big data.

An overall comparison of state of the art methods in various dataset size, sample dimensions, and the number
of CPUs and GPUs is presented in [8]. Methods like the ones above aren’t mentioned although the categories
described are pretty clear.

3 Experiments and methodology

At big-data scale, many every method has its weaknesses and strengths, and a way to compare them is
by considering how well they perform for different amounts of data n and descriptors or features d. This
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n d Single CPU Single GPU CPU Cluster GPU Cluster

Small Small Standard MCMC GPU-accelerated
particle filters

Independent parallel
chains

Not needed

Small Big HMC or Gibbs
sampling

HMC or
GPU-accelerated
Gibbs sampling

Asynchronous
Gibbs sampling

No Bayesian
method

Big Small Continuous-time
MCMC with

subsampling and
control variates

Continuous-time
MCMC or

GPU-accelerated
Gibbs sampling

Asynchronous
Gibbs sampling or
methods based on

sharing

No Bayesian
method

Big Big Hopeless: point
estimates only

Model-specific Model-specific No Bayesian
method

study is in progress and will first categorize the different ways of combining subposterior draws and review
various types of constraints in those methods and their characteristics such as time complexity. Some of
the methods are open source, others part of libraries like Edward [9]. Second, based on this understanding,
a decent methodology for dealing with large-scale problems will be proposed. This whole study is being
conducted taking into account the drawbacks of MCMC methods: speed, autocorrelation, performance in
multi-modal distributions, so the third step will be to use proper evaluation methods.
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