Exploring transfer learning for self-driving car
dataset

Paula Kintschev Santana de Moraes
Computer Science Departament — Institute of Mathematics and Statistics
University of Sdo Paulo
Sao Paulo — SP — Brazil

. aulaksm@ime.usp.br
1 Introduction P P

A core subject in the self-driving cars domain is how to use images taken in real-time to best steer a
vehicle in a road. Mapping visual inputs to steering commands can be seen from a machine learning
perspective as a regression or classification problem, depending mainly if the control outputs will be
discrete e.g. ’turn left’, *go forward’ or continuous e.g. steering angle: 4+0.014°. In this experiment,
the road following task will be treated as a classification problem, so given an input image the learning
model will predict a control command (‘up’, ‘left’, ‘right’).

In this context, how to encode an image as a feature vector is a crucial step. Given an image with
dimensions 45 x 80 x 3 one simple way to “extract” features is by flattening it to a single dimension,
in this case each pixel is a feature of a 10, 800-dimensional input vector. This image vector can be
an input to a Convolutional Neural Network (CNN) or Deep Feed Forward Network (DFF), where
the weights for each pixel will be learned in respect to the classification output. To obtain a good
performance with an end-to-end learning approach, it is mandatory to have a large dataset of this
learning domain. Unfortunately, domain-related datasets are not always available in a good amount
or not easily collected. Learning from small datasets can be achieve with transfer learning.

Transfer learning is a learning framework that allows knowledge transfer in a way that the training
domain and feature space for a given task in a model may be different from the testing tasks for this
same model. One approach to transfer learning is feature-representation-transfer that aims to find a
feature representation that minimizes the difference between source domain, in which the model was
trained, and target domain, a different domain of interest. In a supervised feature construction the
goal is to learn a low-dimensional representation that is shared across related tasks (1). In the context
of transfer learning, pre-trained deep learning models, ConvNets, can be used for feature extraction.
Since its architecture consists mainly in a stack of convolutional layers followed by fully-connected
layers, it can be used as a feature extractor as long as the final layer is removed.

This work aims to (i) explore pre-trained CNNs using a self-driving car dataset, (ii) create a public
available repository to generate image embeddings, and (iii) investigate the impact of feature extrac-
tion with transfer learning by comparing accuracy of models trained with this pre-processed input
vector and with models trained in an end-to-end learning approach.

2 Dataset and Manipulation

The self-driving car dataset (2)) used in this experiment is the result of driving a small remote
controlled robot car (Figure [I)) for 4 hours in an oval paper track (Figure [, where for each car
command ‘up’, ‘left’ or ‘right’ an image was taken and saved. Totalizing roughly 70,000 data points.
The dimensions of the RGB images are 45x80. Each image in the dataset is associated with a label
that corresponds to a command given to the robot. Figure [3|shows some of the data points.

Since Keras has deep pre-trained models trained on ImageNet, a public repository was created to
provide different image embeddings for a quick evaluation of machine learning algorithms to be
trained on different representations of the same input data (3)).

Abstract - 1st Official LXAI Research Workshop

Figure 2: Dataset track

(a) Left (b) Up | | () Right

Figure 3: Examples of all classes in the dataset

3 Transfer learning vs end-to-end learning

Table[I]shows the results for different embedding techniques, using VGG-16, MobileNet and Xception
architectures with their pre-trained weights. Our base line is a convolutional model trained in an
end-to-end fashion i.e. without feature engineering. The architectures are represented as lists where 3
is the output layer with softmax activation, so [200, 3] stands for a network with one hidden layer
with 100 units. In the convolutional model, tuples represents a convolutional layer of 24 5x5 filters,
for example.

Table 1: Results for training simple multilayer perceptrons on different image embbedings comparing
to a model trained using an end-to-end approach (highlighted in red)

Embedding | Architecture Input features | Training instances | Accuracy
VGG-16 [200, 3] 4096 2900 0.797
MobileNet | [200, 3] 1024 2900 0.784
Xception [200, 3] 2048 2900 0.785
flattening [(24, 5), (36, 5), (64, 5), 200, 3] | 10800 56000 0.80

Analysing Table[I] is clear for this task that when using transfer learning is possible to get similar
results to a classical supervised learning training approach using much less data. Also is important
noticing the reduced size of the input vector in contrast to working with flat image representations,
reducing the total computational cost.

4 Conclusion

Transfer learning has proven to yield good results on feature extraction in a unique domain, presenting
similar results of a deep classical training approach using only 5% of the original training dataset.
It’s also worth noticing that since we collected the data, the images passed through the pre-trained
networks were never seem before on their trainig phase, showcasing that indeed a transfer of feature
knowledge was achieved. Future work resides on using layer visualization techniques to better
understand the feature extraction process.

References

[1] S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and
data engineering, vol. 22, no. 10, pp. 1345-1359, 2010.

[2] P. Moraes and F. Salvatore, “Self driving data.” https://github.com/felipessalvatore/
self _driving_data/, 2018.

[3] P. Moraes, “Transfer learning - image embeddings generator.” https://github.com/
paulaksm/transfer-learning, 2018. commit XXXXXXX.

https://github.com/felipessalvatore/self_driving_data/
https://github.com/felipessalvatore/self_driving_data/
https://github.com/paulaksm/transfer-learning
https://github.com/paulaksm/transfer-learning

	Introduction
	Dataset and Manipulation
	Transfer learning vs end-to-end learning
	Conclusion

