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1 Introduction1

Prediction of future user activities from their history, all past activities, is a challenging problem.2

One reason is that the number of all potential histories grows exponentially with the length of the3

history. Recently, deep-learning models have been proposed for solving this problem [4, 8].4

It is easy to learn a simple predictor of future user activities, by averaging all past activities of the5

user and then learning an activity classifier from this average representation, for instance by logistic6

regression [7]. This approach tends to have a high bias, due to using a simple feature representation7

and model. It is also easy to apply sequence models in deep learning [11] to learn a predictor of8

future user activities. This approach tends to have a high variance, because of the large number of9

parameters in the neural network.10

To achieve the best of both worlds, low bias and variance, we investigate the value of constraining11

neural networks when learning user activity models. In particular, we hypothesize that more distant12

user activities should have a lower impact on future user activities than more recent activities. In a13

neural network, this would correspond to a constraint that the weights of the neurons that represent14

distant past activities are lower than those of the recent activities. We implemented this constraint15

in combination with stochastic gradient descent (SGD) [3, 6]. When the constraint is violated, we16

project the weights of the neurons back to satisfy the constraint using quadratic programming.17

Our paper is organized as follows. In Section 2, we formally describe our models. In Section 3,18

we introduce our dataset and validate our hypothesis empirically. We observe minor improvements19

due to enforcing the constraint. Our subsequent analysis revealed that this because even the uncon-20

strained neural network converges to the solution that satisfies our constraint.21

Our work is related to [1], and a large body of work on attention modeling in deep learning [9, 2, 10,22

12], which apply further constraints over the neural networks weights. In [1] the authors developed23

a new class of neural network layers that can solve a quadratic program. For example, they can be24

used to solve a Sudoku puzzle. In contrast, we enforce inequality constraints over the weights of25

a latent vector. Our work differs from attention models in deep learning in that the attention filter,26

which is the equivalent to our latent vector, does not impose the inequality constraints and bounds27

on the weights of the mask. The only constraint is an equality one, that the weights have to sum up28

to one.29

2 Model30

We consider the following model of user behavior. The observation at time t is denoted by vt ∈31

[0, 1]d. The observation is any vector that represents the activity of the user at time t. The time is32

discrete. Our goal is to predict some variable of interest at time t, yt, from the history of the user up33

to time t, (v`)t−1`=1.34
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A naive approach is to predict yt directly from (v`)
t−1
`=1, the sequence of all past observations without35

any prepossessing. This approach is problematic because it does not generalize well. In particular, to36

perform well on unseen test users, it is necessary to generalize from similar users, similar sequences37

of past observations, in the training data. The number of such sequences is likely to be exponential38

in the length of the history.39

An alternative is to compress the history of the user to gain statistical efficiency. In particular, we40

can build the profile of the user at time t, xt, which is a function of (v`)t−1`=1, and then train a predictor41

of yt from xt. One potential choice is the weighted average profile42

xt =

t−1∑
`=1

αt−`v` , (1)

which is the weighted sum of past observations. A reasonable constraint to enforce is that43

1 ≥ α1 ≥ · · · ≥ αt−1 ≥ 0 , (2)

which means that more recent observations are more influential than more distant ones. This profile44

is more statistically efficient than the complete history for multiple reasons. First, it is permutation45

invariant, in the sense that the order of observations with similar weights does not matter. Second,46

the observations are additive.47

The weighted profile in (1), although natural, has two shortcomings. First, it is computed by aver-48

aging in the space of observations vt, which may not be the best space for generalization. Second,49

the problem of predicting yt is decoupled from that of choosing the profile.50

In its most generality, the problem of learning yt and xt can be coupled as51

yt = f

(
t−1∑
`=1

αt−` g(v`)

)
, (3)

where g is a function that transforms individual observations into the latent space, where their52

weighted sum forms a profile of the user; and f is a function that maps the profile to predictions. We53

represent f and g by neural networks. The weighted profile in (1) can be expressed as this profile54

when g is an identity.55

In this work, we learn (3) under the constraint in (2), to study the benefits of constraining rich non-56

linear representations. We learn our representation as follows. Let θfi and θgi be the i-th parameters57

of neural networks f and g, respectively. Fix (v1, . . . , vt−1, yt), the history of the user up to time58

t and the response at time t. We apply gradient descent on this data point and update all model59

parameters as follows. First, we run backpropagation on the network in (3). Let δfi be the gradient60

of θfi , δgi,` be the gradient of θgi with input v`, δα` be the gradient of α`. Then61

θfi ← θfi − γδ
f
i , α` ← α` − γδαi , θfi ← θfi − γ

t−1∑
`=1

δgi,` ,

where γ > 0 is a learning rate. The above update may violate the constraint in (2). To enforce it, we62

project α back by solving63

α← argmax a∈[0,1]t−1 ‖a− α‖2 s.t. 1 ≥ a1, a1 ≥ a2, . . . , at−2 ≥ at−1, at−1 ≥ 0 .

Note that this is a quadratic program with t − 1 variables and t linear constraints, which can be64

solved efficiently.65

3 Experiments66

We experiment with the Movielens 20M dataset [5]. The task is to predict the movie genre watched67

by the user from previously watched movie genres. More precisely, yt is the watched movie genre68

at time t and v` is the indicator vector of movie genres watched at time `. We assume that function69

g in (3) is identity, and learn both f and α.70

We compare four methods. The first one is logistic regression on the weighted user profile in (1).71

The discount factor is set as α` = 0.75, 0.9, 1.0. We choose three scalars and build the feature72
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Figure 1: ROC curves showing the performance of LR , NN, uncoNN and coNN methods on the
’Adventure’, ’Children’ and ’Comedy’ genres from the Movielens 20M dataset.

vector concatenating discounted (3) vectors before applying f . We did this to give the models data73

discounted at different rates, consequently richer features to use. We call this method LR. The74

second method is the same as the first one, except that we use deep learning instead of logistic75

regression. We call this method NN. The third method is learning of (3) under the constraint in76

(2). The method is implemented as described in Section 2 and we call it coNN. The last method is77

the same as the third one, except that we do not enforce the constraint in (2). We call this method78

uncoNN.79

In Figure 1 we show the ROC curve on the prediction of three genres: Adventure, Comedy, and80

Children. We selected those genres given their highest presence in the dataset. We see that uncoNN81

and coNN outperform LR and NN. The methods uncoNN and coNN perform better because learning82

α, which constraint the past observations, is beneficial. The propose method coNN is on par with83

uncoNN in the results. After analyzing the values we encounter that uncoNN compute α that satisfy84

the expected constraints.85
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