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1 SUMMARY

In this article we use rate-distortion theory, a branch of information theory devoted to the problem of lossy compression
introduced by Claude Shannon in 1959 [1]], to shed light on an important problem in latent variable modeling of data:
is there room to improve the model? One way to address this question is to find an upper bound on the probability
(equivalently a lower bound on the negative log likelihood) that the model can assign to some data as one varies the
prior and/or the likelihood function in a latent variable model. The core of our contribution is to formally show that the
problem of optimizing priors in latent variable models is exactly an instance of the variational optimization problem
that information theorists solve when computing rate-distortion functions, and then to use this to derive a lower bound
on negative log likelihood. Moreover, we will show that if changing the prior can improve the log likelihood, then
there is a way to change the likelihood function instead and attain the same log likelihood, and thus rate-distortion
theory is of relevance to both optimizing priors as well as optimizing likelihood functions. The result we present
here runs much deeper than the particular modeling problem being solved - in formally connecting the latent variable
modeling problem to rate-distortion theory, we have established a bridge where decades of work on either field can
now be considered for possible cross-pollination; notably in a subsequent article we intend to ask the question next of
whether practical algorithms in data compression can be used to design latent variables. We will experimentally argue
for the usefulness of quantities derived from rate-distortion theory in latent variable modeling by applying them to a
problem in image modeling.

1.1 ELABORATION

A statistician plans to use a latent variable generative model
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where p(z) is known as the prior over the latent variables, and ¢(x|z) is the likelihood of the data given the latent
variables. Frequently, both the prior and the likelihood are parametrized and the statistician’s job is to find reasonable
parametric families for both - an optimization algorithm then chooses the parameter within those families. The task of
designing these parametric families can sometimes be time consuming.

In this article we ask the question of how much p(z) can be improved if one fixes ¢(x|z) and viceversa, with the goal
of equipping the statistician with tools to make decisions on where to invest her time. One way to answer whether p(z)
can be improved for fixed ¢(xz|z) is to drop the assumption that p(z) must belong to a particular parametric family and
ask how a model could improve this way. Mathematically, given data {x1, -,z } the first problem we study is the
following optimization problem: for a fixed ¢ (;E|z)
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which as we will show, is also connected to the problem of determining if £(x|z) can be improved for a given fixed
p(2). The quantity being optimized in (2)) is called the average negative log likelihood of the data, and is used whenever
one assumes that the data {x1, - - - , zy } have been drawn statistically independently at random.

Obviously, for any given ¢(x|z), p(z), from the definition (1) we have the trivial upper bound
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The question we ask here is, can we give a good lower bound? A 1ower bound could tell us how far we can improve
the model by changing the prior. The answer turns out to be in the affirmative. By connecting (2) to the computation
of rate-distortion functions [2]], which is how information theorists study the problem of lossy compression, we will
show that
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This result is very general - it holds for both discrete and continuous latent variable spaces, scalar or vector. It is also
sharp - if you plug in the right prior, the upper and lower bounds match. It also has the advantage that the lower bound
is written as a function of the trivial upper bound (3)) - if someone proposes a latent variable model p(z) which uses a
likelihood function ¢(x|z), the optimal negative log likelihood value when we optimize the prior is thus known to be
within a gap of
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More frequently than not, the problem is not to improve a prior, but for a fixed prior, to improve the likelihood function.
Interestingly, rate-distortion theory still is relevant to this problem, although the question that we are able to answer
with it is smaller in scope. Through a simple change of variable argument, we will argue that if the negative log likeli-
hood can be improved by modifying the prior, exactly the same negative log likelihood can be attained by modifying
the likelihood function instead. Thus if rate-distortion theory predicts that there is scope for improvement for a prior,
the same holds for the likelihood function but conversely, while rate-distortion theory can precisely determine when it
is that a prior can no longer be improved, the same cannot be said for the likelihood function.

In our presentation, we will demonstrate that statistics derived from this lower bound are actually very effective at
predicting whether various generative models for priors and likelihood functions of ever increasing complexities [3],
[4]] can be improved further for a variety of image modeling data sets (MNIST, OMNIGLOT, Caltech 101 Silhouettes,
Frey Faces, Histopathology and CIFAR).

We stress that we are not first in noticing that there are relations between rate-distortion theory and the general field of
latent variable modeling. The Information Bottleneck method of [5] is a preeminent example of a successful idea that
exists in this boundary, having created a subfield of research that remains relevant nowadays, [6] [[7]. The autoencoder
concept extensively used in the neural network community is arguably directly motivated by the encoder/decoder
concepts in lossy/lossless compression. Recently, [8] exploited the 5-VAE loss function [9]] to explicitly introduce a
trade-off between rate and distortion in the latent variable modeling problem, where the notions of rate and distortion
have similarities to those used in this article.

In contrast to earlier works, our contribution is more basic - it goes to directly tying formally the most elementary
rate-distortion setup, introduced in 1959 by Claude Shannon, to the problem of latent variable modeling which to our
knowledge had not been done. The field of rate-distortion theory of course has not been idle since Shannon introduced
it, and we think it that there are ideas within it, beyond those exposed in this article, that could be adapted to good use
in the problem of latent variable modeling.
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