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1 Research Problem and Motivation

Despite the recent success of Deep Reinforcement Learning (DRL) in areas of robotic manipulation, game
playing and control (Mnih et al., 2015; Levine et al., 2016), most DRL agents are trained to maximize
a unique reward function (solving a single task) or trained within a environment with a unique MDP
structure (solving a single domain). This type of training is not only limited to solving one task / domain
at a time but also ignores the potential benefit that training across parallel tasks and domains can have in
improving learning speed, sample efficiency, and final (asymptotic) performance.

In this project we examine the research problem of how an agent trained through Reinforcement
Learning can achieve high performance across multiple tasks or domains learnt in parallel (Zhang and
Yang, 2017). We also analyze if this type of training poses any benefit when compared to single task
learning agents. We propose a hard parameter sharing architecture with several branches capable of being
trained in parallel for multi domain (MDL) and multi task (MTL) learning problems. 1

2 Technical Contributions

The Multi Domain experiments were done in the 2D Bipedal Walker environment 2 were we explored
three domains which consist in changing the magnitude of the ”wind” (constant negative horizontal force):
no wind (wind=0), moderate wind (wind=1) and extreme wind (wind=2). The Multi Task experiments
were carried in the Lunar Lander environment 3 were the reward function was modified in order to
produce three different tasks: learning how to land in the center of the scenario (task ”goal”), landing
away from the center of the scenario (task ”not goal”) and learning how to fly (task ”fly”).

Figure 1: Multi Headed Architecture

The main contribution of this work is a hard parameter shar-
ing (Ruder, 2017) neural network architecture that can be used
as a policy and value function approximator when training a
single agent across multiple tasks and domains. The proposed
architecture denoted by Multi Headed Network is shown in
fig. 1 , the idea behind it is to have a block of layers shared
across all task / domains (Core Layers ) and several branches
with layers specializing for specific feature extraction (Head
Layers). Through this branched architecture we circumvent the
common problem of catastrophic interference (McCloskey and
Cohen, 1989), in which previously learnt knowledge is over-
written and forgotten when new tasks / domains are learnt. The
Core layers who’s parameters are updated based on episodes
from all tasks/domains act as a common encoder learning rep-
resentations that are useful across all the different problems -
for example a stable gate for walking, or a good controller

1The code for this project and a Demo video can be found in: https://github.com/david1309/Multi_Task_RL and
https://bit.ly/2OCqHsN

2https://gym.openai.com/envs/BipedalWalker-v2/

3https://gym.openai.com/envs/LunarLander-v2/
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that allows the spacecraft to be stable while in the air. The Head layers which are solely updated based
on episodes sampled from each specific problem act as decoders which based on the common features
extracted by the encoder produce appropriate actions for each individual problem - modifying the robots
hull angle to produce different forward momentums for not falling under high winds or controlling the jet
engines to fly or land. To produce the differentiated training of the Core and Head layers we introduce in
the network’s computational graph a switch-case operation controlling which gradients flow to each of
the branches of the network.

To asses if the parallel task training of our proposed network had any benefits with respect to standard
training methods, we created as baseline several Single Domain (SDL) and Single Task (STL) agents.
Their Policy and Value function were parametrized by standard feed-forward neural networks. All
the single and multi task/domain agents were trained using policy gradients based on Proximal Policy
Optimization (Schulman et al., 2017) and its gradient estimators were computed using the Generalized
Advantage Estimator approach (Schulman et al., 2016).

Our results shown in Table. 1 demonstrate that the Multi Headed Network was capable of achieving
a high performance across all domains and tasks in the Bipedal Walker and Lunar Lander training
environments. In the first 2 domains our proposed architecture achieved a comparable performance to
the SDL agents, and in the third domain it even produced a 4.981% improvement on the asymptotic
reward (as measured by R̄10) and a 13.940 % improvement on the sample efficiency (as measured by
R̄all) when compared to SDL agents. This demonstrates that parallel training was indeed able to produce
benefits regarding performance and learning speed. For the multi task learning problem all though we did
not observe any direct benefit of training across parallel tasks, the MTL agent achieved a comparable
performance relative to each STL agent. Such comparable performance highlights the capability of the
Multi Headed Architecture of achieving parallel learning and demonstrates that this agent is capable of
learning to maximize multiple reward functions at the same time. On average, it performed 74.983% as
good as the other single task agents.

Table 1: Comparison of the proposed Multi Domain and Multi Task learning agent with respect to standard Single
Domain/Task learning agents. R̄all - average reward across entire training. R̄10 - average reward over last 10

network updates. MDL
SDL - quantifies the relative final performance between agents based on the R̄10 score

Domain R̄all (agent) R̄10 (agent) MDL
SDL Best Agent

wind=0
226.469 (SDL) 287.735 (SDL)

90.955% SDL
214.793 (MDL) 261.712 (MDL)

wind=1
232.027 (SDL) 263.074 (SDL)

92.307% SDL
182.677 (MDL) 242.836 (MDL)

wind=2
170.746 (SDL) 262.385(SDL)

104.981% MDL194.548 (MDL) 275.457 (MDL)

Task R̄all (agent) R̄10 (agent) MTL
STL Best Agent

Goal
192.891 (STL) 382.747 (STL)

77.959% STL
134.495 (MTL) 298.388 (MTL)

Not Goal
518.796 (STL) 631.498 (STL)

48.308% STL
377.908 (MTL) 305.070 (MTL)

Fly
127.238 (STL) 192.446 (STL)

98.682% STL
93.731 (MTL) 189.911 (MTL)
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