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1 Introduction
A hallmark of human cognition is the ability to continually acquire and compress observations of the
world into meaningful, predictive theories without explicit supervision. This allows us to quickly
understand new concepts and make useful predictions about them. For example, we might represent
our knowledge of animals in a taxonomic hierarchy. Using such a hierarchy allows us to infer a
whole range of new facts about an individual, observing that a Harpy Eagle is a type of Eagle allows
us to immediately deduce that a Harpy eagle can fly and breathe. How such representations can be
learned from raw observations has been a key problem in semantic knowledge acquisition going back
at least to the 1960’s in the work of [3], with symbolic, bayesian, and neural approaches proposed
[7, 5, 8]. We follow [8] in proposing Theory Learning as a way to address three questions in the
development of a solution. Symbolic and neural solutions each have complementary strengths and
weaknesses. Symbolic models can learn from very little data and generalize well but are brittle and
prone to failure when the observations are noisy as they inevitably are in the real world. They also
provide little insight into how their symbolic structure might be learned. Neural models are generally
robust to such noise but prone to over-fitting and require large amounts of data to train. They are also
difficult to interpret. There is a long history of research in neural-symbolic systems which try to get
the best of both worlds, for a survey see [1]. Two particularly relevant recent examples for logical
rule induction include [4] and [6]. Both of these approaches offer differentiable models which can
be trained using gradient descent, but are interpretable and generalize well with little data. But both
suffer scalability issues: [4] because they must enumerate all pairs of possible rules and [6] because
they must build a proof tree which grows exponentially in the depth.

2 Model
In this paper we present a new inference network model which is trained using stochastic gradient
descent to do rule induction in a standard ILP setting but can also do theory learning through the
induction of both a set of core facts and a set of logical rules. The network is neuro-symbolic in
the sense that it can learn the logical structure underlying a set of observed facts using dense vector
representations for both the atoms of the rules and for the predicates of the facts. By learning a core
set of facts from which the observed knowledge can be recovered through inference, we can compress
at the same time we generalize. Compression is achieved through a loss term which penalizes the
number of initial core facts.

Facts are triples (p, s, o), where p ∈ N is an index into a dictionary of predicate embeddings P ,
and s, o ∈ C (subject and object) are indices for constants that form the arguments of the facts. To
allow for predicate invention, P is provided with auxiliary predicates that might become useful in the
logical rules. The embeddings that form the fact predicates can be kept fixed or can be parametrized
and modified through learning. A valuation V : N× C2 → [0, 1] is a mapping intended to capture
the algorithm’s belief in the truth of the facts. Logical rules are of the form h← b1, b2, . . . , bn where
h and bi are atoms with variables as arguments, such as grandfather(X,Y ). The head of the rule
may have either one or two universally quantified variables. The body must use any variables used in
the head and may in addition have existential variables. For example, the body may be of the form
b1(x, z), b2(z, y) where x and y are universal and z is existential. We use simple templates which
considerably constrain the form of the rules. Every atom of a rule is associated with an embedding
that is randomly initialized. During learning, rules acquire their meaning by becoming similar to the
dictionary predicates.
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Figure 1: Overview of the Model. Parameters are represented in green and constitute the trainable
embeddings, orange arrows indicate paths on which gradients flow (in the opposite direction).

The operation of the network is illustrated Figure 1. The network starts with the initial valuations
which are updated through K steps of forward inference using the logical rules. To update, the
algorithm loops over each rule and sequence of facts making sure that the constants of the facts and
the variables of the rules can be matched. For example the rule body b1(x, z), b2(z, y) will unify
with p1(a, b), p2(b, c) but not with p1(a, b), p2(c, d). If the fact sequence matches, we iterate over
fact predicates to compute new valuations. Multiplication between the unification score for the body,
the unification score for the head and the implied valuation is used as a soft form of AND. The
unification score of the body is the product of the cosine distance of each of the body atoms from
their corresponding facts. The implied valuation is computed using the current valuations for each
of the facts being unified with the body. The unification score for a particular predicate is taken
with the head. If the implied fact was in the valuation already, it is updated with the max of the
previous and the new values (implementing an OR), if it is not, the new fact is appended to the
valuation. In this way the valuation is dynamically extended at each step of inference. To train,
the K steps of the inference network are composed and the valuation of the final consequences are
compared to the valuations of the target using the binary cross entropy loss. The loss gradients are
back-propagated to update the predicate embeddings for the rules and for the facts. The rule and fact
predicate embeddings are the parameters of the network. When a set of background facts is given, we
initialize the current valuation for the background facts set to 1.0. In the case of Theory Learning, we
parameterize the valuations by initializing them to 0.5 and train them towards values which allow the
model to recover the observations.

3 Experiments and Results
Predicate Learning ILP Tasks. We test a selection of the ILP problems from [4] where the task is
to learn a target relation from a set of background knowledge facts. Table 1 gives a performance
comparison. We see that our algorithm performs considerably better. When the embeddings of
the predicate dictionary are fixed as one-hot vectors, our procedure is very similar to theirs, where
embedding weights are associated to predicates and search happens at the more compositional level
of atoms. The more general case with trainable dense embeddings opens the interesting direction of
studying the vector embedding semantic space.

Table 1: Predicate learning tasks. Percentage of succesful random weight initializations.

Task |I| Recursive ∂ILP Ours

Even 2 Yes 48.5 100
Fizz 3 Yes 10 10
Buzz 2 Yes 35 70
Grandparent 2 No 96.5 100
Cyclic 2 Yes 100 100

Countries. We are not focused specifically on knowledge base completion but use the COUNTRIES
dataset [2] to evaluate the scalability of our algorithm. The dataset contains 272 constants, 2 predicates
and 1158 true facts and we compare with the 3 tasks described in [6] (S1,S2,S3 in table 2). At each
training epoch we randomly sample from a section of the knowledge graph both the targets and a set
of facts that form the background knowledge.
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Table 2: Performance on COUNTRIES dataset
Task NTP NTP-λ Ours

S1 90.83± 15.4 100.00± 0.0 91.15± 15.4
S2 87.40± 11.7 94.04± 0.4 86.87± 3.2
S3 56.68± 17.6 77.26± 17.0 63.08± 28.2

Learning Theories. We test the capability of our network to compress a set of observations in the
form of a theory by learning both a set of core facts in addition to the logical rules. We take the two
examples considered by [8]. A Taxonomy is a a tree structure where all the observed facts can be
recovered from inheritance rules such as IS(x, y) ← IS(x, z), IS(z, y), and from a small set of
direct relations which form the core facts. We report performance on the harder tree from [7, p. 17].
The Kinship theory consists on the compression of 6 observed predicates (mother, father, daughter,
wife, husband) into 4 new core predicates (female, male, spouse, child). Table 3 shows the statistics
for the observed data and for the target compressed theory as well as the algorithm performance
quantified as the percentage of initializations where the rules are successfully learned, the accuracy
of the recovered data and the number of learned core facts.

Table 3: Theory Learning Results

Taxonomy Family

# Preds # Const # Facts # Preds # Const # Facts

Observed 4 36 145 6 10 30

Target Theory 4 36 40 4 10 28

% Succ %Acc. #Facts % Succ %Acc. #Facts

Network 70 99 69 100 96 30.8
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