
3D Medical Image Segmentation based on 3D Convolutional Neural

Networks

Alejandra Márquez Herrera

September 20th 2018

Abstract

A neural network is a mathematical model that is able to perform a task automatically
or semi-automatically after learning the human knowledge that we provide it. Moreover, a
Convolutional Neural Network (CNN) is an specific type of neural network that is able to
efficiently learn tasks related to the area of image analysis (among other areas). One example
of these tasks is image segmentation, which aims to find regions or separable objects within an
image. A more specific type of segmentation called semantic segmentation, makes sure that each
region has a semantic meaning by giving it a label or class. Since neural networks can automate
the task of semantic segmentation of images, they have been very useful in the medical area, as
they can perform segmentation of organs or abnormalities (tumors) in medical images, which
otherwise would be a difficult and tedious task for humans. There has been recent work using
CNNs for performing semantic segmentation of 2D images [6, 8], and volumetric medical images
such as the 3D U-Net, V-Net, among others [3, 7, 9].

Loss functions [10], are a fundamental part of these networks since they are in charge of
measuring how well a model fits the data, resulting in a number that indicates the degree of
error of our network, so that we can manage to minimize it.

Different types of loss functions have been used for semantic segmentation, such as the well
known Cross-entropy loss and its different variations for improving segmentation results [3, 2, 1],
the Malis loss [11], the Tversky index [5], among others.

The purpose of this work is to propose a modification in the loss function formulation of
a 3D CNN based method for the semantic binary segmentation of volumetric medical images,
using as a base model the architecture of the V-Net [7] and applying the idea of using similarity
coefficients as loss functions for segmentation. A general view of the pipeline is shown in Figure 1.

Figure 1: 3D medical image segmentation training pipeline

Even though we could think of modifying and adapting the classical Cross-entropy as an error
function for a semantic segmentation problem, it might not always be efficient for performing
pixel-wise classification in a segmentation context [11] .
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That is why some other loss function alternatives for semantic segmentation emerge for im-
proving the quality of the segmentation, taking advantage of the spatial context information
of the pixels within an image, something that a Cross-entropy loss function does not do, for
example. One of this alternatives is the idea of using similarity coefficients as actual loss func-
tions. These coefficients, as its name suggests, are used for comparing the similarity between
two objects and they have been adapted as loss functions in segmentation problems as a metric
for comparing how similar a segmentation is to its ground truth.

One of the works that indroduced the idea of using a similarity coefficient as a loss function
was introduced in [7], as the authors used a similarity coefficient called the Dice Similarity
Coefficient and adapted it as a pixel-wise objective function. Some other work [12, 4], made
some extensions of the loss function proposed in [7], and introduced modifications for the binary
and multi-class cases. The authors proved that their loss functions performed better than the
classical Cross-entropy for segmentation by proposing different ways of measuring the spatial
overlap between the prediction and segmentation ground truth and then calculating the loss.

Based on these previous approaches, we propose the use of a metric called ’Kulckynsky
coefficient’ (Equation 1) which is a similarity coefficient based on operations using the True
Positives (TP) and False Negatives (FN), as a loss function for guiding the semantic segmentation
learning process of volumetrical medical images. We show results on how the choice of the loss
function can affect the final quality of the segmentation.
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For our experiments we used the PROMISE121 dataset, and we show comparisons in the
quality of the final segmentation results obtained by training the network with some pre-existing
loss functions such as the Cross-entropy loss, the Dice loss and the Wasserstein loss, and compare
them against our proposed loss function. These comparisons are made in terms of the Dice Score.

1https://promise12.grand-challenge.org/
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