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Conditionally Interpretable Super Learner
Gilmer Valdes*, Yannet Interian*, Efstathios Gennatas and Mark Van der Laan

Abstract—In this article we consider the Conditional Super Learner (CSL) algorithm that conditional on the covariates, selects the best
model candidate from a library of models . The CSL expands the idea of using cross validation to select the best model and merges it
with meta learning. Here we propose a specific algorithm that finds a local minimum to the problem posed, proof that it converges at a
rate faster than Op(n−1/4) and offer extensive empirical evidence that it is an excellent candidate to substitute stacking or for the
analysis of Hierarchical problems. Additionally, implication for global interpretability and model distillation are also emphasized.

Index Terms—Cross-validation; Meta Learning; Super learner; Interpretability; Non Parametric Hierarchical models.

F

1 INTRODUCTION AND RELATED WORK

The idea of combining different models to obtain one
that is better than any of its constituents (meta learning)
has been explored extensively and it is currently used in
many applications [1]–[3]. Meta learning today, however,
mainly consists of creating linear combinations of models
(i.e stacking). Its purpose is to improve the accuracy of the
individual models, albeit at the expense of interpretability.
Related ideas are also explored for ensemble methods which
create linear combination of simpler models. Two main
ensemble methods can be highlighted: bagging and boosting
[4], [5]. In bagging, models are averaged to reduce the
variance of individual models and improve accuracy. In
boosting, simple models are sequentially learned reducing
the bias of the estimator at each step [6].

Usually thought independently from meta learning, the
use of cross validation to select the best algorithm from a
library (either different models or different hyperparameters)
is widely popular [7]. Establishing the theoretical basis for
designing an oracle algorithm that will select the best from
a library of models (using cross validation), Van der Laan
et al demonstrated that cross validation can be used more
aggressively than previously thought, terming the cross
validation selector “super learner" [8]. Specifically, it was
shown that if the number of candidate estimators, K(n),
is polynomial in sample size, then the cross validation
selector is asymptotically equivalent to the oracle selector
–one that knows the best algorithm [8]. Similarly to the
empirical use of cross validation, the super learner proposes
to select one model from the library for all the observations.
Everything else being equal, we would prefer if a simple
model is selected to be able to afford interpretability and
easier deployment. However, if the data generating process
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is complex and one uses simple models in the library, it is
possible that the model selected to be the best in one region
of the covariates might not be the best in another. Therefore,
using simple models in the library will introduce biases and
decrease accuracy.

In the present article, we develop an algorithm that selects
the best model from a library conditional on the covariates,
called here the Conditional Super Learner (CSL). This meta
algorithm can be thought as learning in the cross validation
space. With the CSL, therefore, we investigate a meta learning
strategy that reduces the bias of the models in the library by
selecting them conditional on the covariates. We show how
the CSL has implications for both the accuracy of models and
their interpretability. Additionally, we also provide extensive
empirical results on how the CSL can be seen as an alternative
to stacking and due to its hierarchical nature, an excellent
candidate for the analysis of hierarchical data. Specifically, in
this article we:

1) Develop the theoretical foundations for the Condi-
tional Super Learner: An algorithm that selects the best
model from a library conditional on the covariates.

2) Provide convergence rate theorems and oracle in-
equalities for the CSL.

3) Illustrate how the CSL is a generalized partitioning
algorithm that finds different boundary functions
(not just vertical cuts as CART does) with M-
estimators algorithms at the nodes.

4) Establish the connection between CSL and inter-
pretability.

5) Show empirically how CSL improves over the reg-
ular strategy of using cross validation to select the
best model for all observations.

6) Show empirically how CSL can give better R2 than
stacking in a set of regression problems.

7) Show empirically how CSL performs in the analysis
of Hierarchical Data.

2 CONDITIONAL SUPER LEARNER

The algorithms that we discuss in this paper are supervised
learning algorithms. The data are a finite set of paired
observations X = {(xi, yi)}N1 . The input vectors x, whose



2

Fig. 1: This diagram shows an application of the CLS model.
In this dataset we have 4 variables: number of bedrooms,
bathrooms, latitude and longitude to predict house prices.
The rectangular region shows how the oracle divides the
latitude and longitude (normalized) in 3 regions. Each
region has its own expert (using number of bedrooms and
bathrooms), represented here by a diagram of a tree, to makes
predictions.

components are called here covariates, are assumed to be on
Rp, while y can be either a regression or classification label.

We propose to solve supervised learning problems by 1)
dividing the input space into a set of regions that are learned
by an iterative algorithm and 2) fit simple interpretable
models that we call “experts" to the data that fall in these
regions. The regions are learned by fitting a multi-class
classification model that we call the “oracle" which learns
which expert should be used on each region. Given an oracle
o(x), region k is defined as {o(x) = k}, that is, the set of
points for with the oracle predict to use the function fk(x).

An example of an application of the CSL is shown in
Figure 1. In here we have 4 variables to predict houses prices:
bedrooms, bathrooms, latitude, longitude. The rectangular
region shows how the oracle divides the latitude and
longitude (normalized) in 3 regions. Each region has its
own expert, represented here by a diagram of a tree, to make
predictions. Each of the experts has as input the 4 variables.

As with any meta-learning algorithm, the Conditional
Super Learner algorithm for learning the oracle o(x) (given
the fits of the K experts) will be applied to a cross-validated
data set, using V -fold cross validation. That is, for each
Yi falling in one of the V validation samples, we have a
corresponding training sample. We couple each observation
Yi with K expert algorithms trained on subsets (from

current best estimate of oracle) of its corresponding training
data set, thereby creating a cross-validated data set of N
observations. In this section, for the sake of explaining the
conditional super-learner algorithm, this formality of cross
validation will be suppressed, but in our theoretical section
(see supplementary material) we make the full conditional
super-learning algorithm formal.

2.1 Definition of CSL
Given an oracle o(x) and K experts models {Fk(x)}Kk=1

fitted on each of the corresponding regions {o(x) = k}, the
CSL can be defined as:

CSL(x) =
K∑

k=1

1{o(x) = k}Fk(x) (1)

where o(x) ∈ {1, 2, ..K}. CSL(x) is the Conditional Su-
per Learner that outputs the prediction from the best model
Fk(x) selected from a library of K models conditional on the
covariate x. The idea is to find the o(x) and corresponding
fits {Fk(x)}K1 that minimize a given loss function over the
training data:

argmin
o,{Fk}K1

N∑
i=1

L
(
yi,

K∑
k=1

1{o(xi) = k}Fk(xi)
)

(2)

2.2 Fitting the oracle
To find the solution to equation 2 we will employ a trick
often used in machine learning. We will iterate between
solving o(x) and solving for {Fk(x)}K1 . To solve for o(x) we
will assume that all {Fk(x)}K1 are known, the library, and
that we also have unbiased estimations (i.e., cross-validated)
of the loss at each training point L(yi, Fk(xi)). In this case,
CSL(x) will aim to find the best o(x) that minimizes the
loss function over the training data

argmin
o(x)

N∑
i=1

L

(
yi,

K∑
k=1

1{o(xi) = k}Fk (xi)

)
(3)

and using the definition of the indicator function, we can
take the sum outside of the loss function and get Equation 4:

argmin
o(x)

N∑
i=1

K∑
k=1

1{o(xi) = k}L(yi, Fk(xi)) (4)

To introduce how we fit the oracle, we define a new
dataset that we called “extended" dataset. This is a dataset
for a multi-class classification problem with K classes, each
class corresponding to one of the expert models. This dataset
has K · N observations – each xi appears K times with
corresponding labels {1, . . .K} and a specific weight.

Definition 1. Given dataset X = {(xi, yi)}N1 , expert func-
tions F = {Fk}K1 we define the extended dataset XF =
{(x̃i, zi, wi)}K·N1 with K ·N observations where:

• x̃i = xbi/Kc+1

• zi = i mod K + 1
• wi is a weight on observation (x̃i, zi) and is defined in the

following way:
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Let li be K dimensional vector li =
(L(yi, F1(xi)), . . . , L(yi, FK(xi)) where element k is the
loss of expert k at point (xi, yi). Let ONEK a K ×K matrix of
all ones and DIAGK a K ×K matrix with ones in the diagonal
and zeros everywhere else.

(wiK+1, . . . wiK+K)T = [ONEK −DIAGK ]−1lTi (5)

Lemma 2.1. Solving problem 4 is equivalent to finding the oracle
o(x) that minimizes the weighted miss classification error of a
extended dataset XF :

argmin
o(x)

N ·K∑
i=1

wi1{o(x̃i) 6= zi} (6)

Proof. First note that a missclassification loss for a multi-
class classification problem can be written as L(y, f(x)) =
1{f(x) 6= y}. We want to write Equation 4 as a
missclassification loss of a classification problem. For
each observation (xi, yi) consider the weighted dataset
{(xi, 1, w1), (xi, 2, w2), . . . (xi,K,wK)} with missclassifica-
tion loss

∑K
k=1 wk1{o(xi) 6= k}. That is, we want to find for

each observation (xi, yi) weights (w1, . . . , wK) such that:

K∑
k=1

1{o(xi) = k}L(yi, Fk(xi)) =
K∑

k=1

wk1{o(xi) 6= k} (7)

Since o(xi) can just have values in {1, . . . ,K} we can
consider all the options. For example, if o(xi) = k, the equal-
ity in Equation 7 becomes L(yi, Fk(xi)) =

∑K
j=1 wj − wk. If

we consider all possible values for o(xi) we get the following
set of equations:

L(yi, F1(xi)) =
K∑
j=1

wj − w1

...

L(yi, FK(xi)) =
K∑
j=1

wj − wK

The previous equation can be written in matrix form
lTi = [ONEK −DIAGK ](w1, . . . wK)T . Which gives us:

(w1, . . . , wK)T = [ONEK −DIAGK ]−1lTi

As a result of Lemma 2.1, o(x) is the solution of a multi-
class classification problem on the extended dataset XF .
We approximate o(x) by fitting any standard classification
algorithm on XF .

2.3 Fitting the experts

Similarly to the previous section, in order to fit the experts
we assume that o(x) is known. Then Equation 2 becomes
K independent classification/ regression problems that
minimize the empirical loss over observations {i : o(i) = k},

Algorithm 1: Conditional Super Learner (CSL)

Input: X = {(xi, yi)}N1 ; F = (F1, F2, . . . , FK)
Initialize: for each sample split v = 1, . . . , V , fit the
experts F = (F1, F2, . . . , FK) on initial subsets of
the v-th training data set. For each i, let Fk,−i be the
k-th expert trained on training sample that excludes
Yi. Construct the corresponding cross-validated data
set (Yi, F1,−i(xi), . . . , FK,−i(xi)), i = 1, . . . , N .

for t = 1 : iterations do
For each point and each expert compute:
L(yi, Fk,−i(xi))

Create extended dataset XF
Fit o(x) on XF
Re-fit each expert Fk on {o(x) = k} for the
V -training samples.

end
Based on final o(x), refit each expert Fk on

{o(x) = k} for total sample.
Result:

∑K
k=1 1{o(x) = k}Fk(x)

for each k = 1, . . . ,K, which is generally already solved by
standard machine learning algorithms.

argmin
Fk

∑
xi:o(xi)=k

L(yi, Fk(xi)) (8)

2.4 A two step algorithm

Finding {Fk(x)}K1 indicates that equation 2 can be mini-
mized iteratively. Following the K-mean algorithm’s philos-
ophy, let us propose the minimization of equation 2 in two
steps: one to fit the oracle and the other to fit the experts.
Please note that if we take into consideration that at every
time that each step is applied the Loss function decreases, the
convergence to a local minimum is guaranteed. Of course,
this is only true if we use, for each observation, the estimation
of (yi, Fk(xi)) on the training data. This, however, will most
likely result in overfitting. After this discussion we are ready
to write Conditional Super Learner pseudo code (see above).

3 SIMULATIONS

In this section we describe our experiments that serve to
benchmark the CSL and illustrate where it is most useful.
In our empirical analysis, we considered all regression
problems from the Penn Machine Learning Benchmarks [9].
In the first set of experiments, datasets where the number
of observations was between 200 and 500000 (N = 84) were
considered. In the second set of experiments, we selected
a subset of those with at least 2000 points (N = 19). We
report R2 as the performance metric. In the first experiments,
datasets were split in 80% training and 20% testing sets. For
the second experiment, we need a validation set, therefore
data was split in 70%/15%/15% for train/validation/test.

In all our experiments we use the following set of base
algorithms or experts:

1) Ridge: alphas = [1e-4, 1e-3, 1e-2, 1e-1, 1, 2, 4, 8, 16,
32, 64, 132]

2) ElasticNet: l1 ratio = 0 (Lasso)
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Fig. 2: One shot CSL vs cross validation. Partitioning the
space in two regions with a depth = 1 decision tree and
choosing a model for each results in an improvement, on
average, over cross-validaiton. Overfitting, however, is still
possible.

3) ElasticNet: l1 ratio = 0.5
4) Decision Tree: max depth = 4
5) Decision Tree: max depth = 5
6) Decision Tree: max depth = 6

Although the CSL can be used with more complex models
as experts, using simple linear or tree models have two
appealing: protects the algorithm for overfitting and has
implications for its interpretability as discussed below.

3.1 Single step CSL and its comparisson to cross vali-
dation
First, we wanted to evaluate empirically how CSL (F3

class of meta learners in the theoretical section presented
in the supplemental material) performs compared to the
naive strategy of using the expert model selected through
cross validation for all the points (F1 class in the theoretical
section). For this we used the library of experts described
above and a decision tree algorithm with max_depth = 1 as
our oracle. No partition was allowed if the terminal node did
not have more than 2% of observations belonging to it. This
decision tree algorithm was selected as the oracle because if
not partition is performed, then the minimization of equation
1 results in selecting the model that minimizes the cross vali-
dation error (equal to F1 class in the supplemental material).
As such, our CSL in this case includes the possibility of just
using cross validation and it should perform, on average,
better than using cross validation to select one model. Please
note that in this section the experts are obtained on all the
training data and only one iteration is allowed for the meta.
The empirical evaluation of this CSL was compared to the
performance obtained if we use cross validation to select
the best model from one of the sixth algorithms mentioned
above.

Figure 2 shows the results obtained when we compared
R2 for both CSL and cross validation. In 77.5% of the datasets
CSL had at least the same performance as cross validation

and in 20% its R2 was bigger by at least 1%. Although these
results show that CSL improves over naive cross validation,
overfitting can happen and extra attention needs to be
paid. In fact, we obtained an outlier where cross validation
outperformed the CSL by 0.125. This problem is the synthetic
dataset 658 − fri − c3 − 250 − 25 from the Friedman’s
regression datasets [9], [10]. The same is a hard problem
where algorithms are prompt to overfit since training only
contains 200 points with 25 explanatory variables, several
of them correlated to each other. Additionally, for those
datasets where CSL was better, on average they had 3805
data points compared to 2368 in those datasets where cross
validation did better. Therefore, as a general rule, CSL
needs more than 2500 data points to perform better than
cross validation. These empirical results corroborate our
suggestions on the theoretical session and the need for a two
tier Super Learner algorithm where the type of meta strategy,
or class of functions as defined here, is also selected.

In the next section, we will compare a full CSL to
stacking. F2 vs F3 meta learning strategies in our theoretical
discussion (supplemental material).

3.2 CSL versus Stacking
Stacking [1], [3], [11] is a general procedure where a learner
is trained to combine the individual learners. The base
level models are trained on the original training set, then
a meta-model is trained on the outputs of the base level
model as features. The base level often consists of different
learning algorithms. In our experiments, we use the same 6
base models defined in previous section. As meta-model in
stacking we use a linear regression model.

CSL. In this experiment, we use the same set of experts
as in previous section and we use a two layer feed-forward
neural network as the oracle. The oracle was written in
PyTorch and fitted with Adam optimizer with learning rates
of 0.15. The number of epochs at each iteration was a function
of the sample size ( 3000

log(N)2 ). The hidden layer was also set
as a function of the sample size (min(2 log(N), 150)). After
the first linear layer and before the Relu activation function,
batch normalization was used. A dropout layer with p = 0.2
is used before the second linear layer.

In Table 1 we show results from comparing CSL and
stacking on regression datasets. For each dataset we run
each algorithm 10 times by spliting training, validation
and testing sets using different seed. CSL_mean shows the
mean R2 over all experiments. Similarly, Stack_mean shows
the mean R2 of the stacking experiments. Diff show the
difference between CSL_mean and Stack_mean. Column Test
results shows whether a t-test found the difference in mean
to be significant. There were 19 datasets in this experiment.
For one dataset stacking is significantly better than CSL.
In 8 problems both algorithms are statistically the same.
In 11 problem CSL is better. In the experiment for dataset
574_house_16H, one of the runs produces an outlier which is
responsible for the mean difference.

3.3 CSL on hierarchical synthetic data
Hierarchical models are extremely important in fields like
Medicine [12]. CSL, due to its architecture, seems specially
suited to analyze hierachical data. In this section, we evaluate
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Dataset CSL_mean Stack_mean Diff Test result
1193_BNG_lowbwt 0.623 0.594 0.028 non-significant
1199_BNG_echoMonths 0.532 0.452 0.080 significant
1201_BNG_breastTumor 0.145 0.109 0.036 significant
1203_BNG_pwLinear 0.619 0.606 0.013 significant
197_cpu_act 0.977 0.959 0.018 significant
201_pol 0.964 0.908 0.056 significant
215_2dplanes 0.943 0.929 0.014 significant
218_house_8L 0.541 0.574 -0.033 significant
225_puma8NH 0.631 0.608 0.023 significant
227_cpu_small 0.964 0.955 0.009 non-significant
294_satellite_image 0.804 0.809 -0.005 non-significant
344_mv 0.992 0.979 0.012 significant
503_wind 0.772 0.756 0.016 significant
529_pollen 0.789 0.790 -0.000 non-significant
537_houses 0.652 0.661 -0.009 non-significant
562_cpu_small 0.965 0.955 0.011 non-significant
564_fried 0.900 0.775 0.126 significant
573_cpu_act 0.973 0.961 0.012 significant
574_house_16H 0.167 0.443 -0.276 non-significant

TABLE 1: Results comparing CSL and stacking on 19 regression datasets. In one dataset stacking is significantly better than
CSL. In 8 problems both algorithms are statistically the same. In 11 problem CSL is better.

Dataset CSL Base RF GBM
564_fried 0.97 (0.02) 0.45 (0.17) 0.82 (0.04) 0.82 (0.06)
574_house_16H 0.98 (0.01) 0.84 (0.04) 0.87 (0.01) 0.93 (0.01)
294_satellite 0.99 (0.01) 0.88 (0.01) 0.98 (0.01) 0.98 (0.01)
218_house_8L 0.97 (0.02) 0.75 (0.03) 0.94 (0.01) 0.93 (0.01)

TABLE 2: Results on running CSL on synthetic data. Com-
parison are made with random forest, gradient boosting and
the best preforming base expert. For each dataset the we
generate 10 synthetic problems. For each method, the mean
test R2 and standard deviation is shown.

the performance of CSL on hierarchical synthetic problems.
Specifically, we wanted to investigate if:

1) CSL can discover hierarchical structures.
2) Compare its performance in these type of problems

to gradient boosting and random forest.

Given a real dataset {(xi, yi)}N1 from the Penn Machine
Learning Benchmarks, we generate syntetic data by using the
observations from the covariates but generating new labels.
Here is how we generated the new (ỹ):

1) Sample 70% of the data.
2) Use the covariates to find K = 3 clusters using K-

means algorithm.
3) Fit a 2-layer neural network using the cluster id as a

label.
4) Using the neural network, predict a cluster id (li) on

each of the original observations, creating the dataset
{(xi, yi, li)}N1 .

5) Fit each subset {(xi, yi) such that li = k} for k ∈
{1, 2, 3} to a regression model (Ridge). Use the
prediction from the regression model as the new
synthetic label (ỹ).

For the experiments in Table 2, gradient boosting was
ran with the following parameters: min_child_weight=50,
learning rate = 0.1, colsample_bytree= 0.3, max_depth=
15, subsample=0.8, and with 500 trees. For random forest,
we used 1000 trees, max_features=’sqrt’ and we found
max_depth with cross validation for each problem. The

problems are a subset of the problems in Table 1, where the
R2 of the base expert is lower than 0.9. The CLS algorithm
was initialized using 11 linear models as based experts. It
turns out that by using trees together with linear models on
these problems the algorithm sometimes would get stuck in
suboptimal local minima so run the CSL multiple times.

Table 2 shows the results (R2) of CSL on synthetic data
compared to random forest, gradient boosting or the best
base expert (selected using cross validation). As it can be
seen, CSL significantly outperforms all other algorithms as
expected.

3.4 Implications on interpretability
In many high-stake domains like medicine and the law,
interpretability of machine learning algorithms is highly
desirable since errors can have dire consequences [13]–[15].
This fact has led to a renew interest for the development
of interpretable models. Interpretability, however, can only
be judge relative to the field of application as it is in
the eyes of the beholders. In fact, there is a considerable
disagreement on what the concept means and how to
measure it [16]–[18]. Different algorithms afford different
degrees of interpretability and even black boxes can be
investigated to gain some intuition on how predictions are
being made. For instance, variable importance or distillation
can be used to interpret neural networks [19]. This level of
interpretability might be enough for applications that do not
impose high risk. In other applications (e.g medicine), the
need to understand the models globally rises [13]. Without
attempting to formally quantify and define interpretability
here, we will illustrate below how the CSL results in models
that are highly transparent.

Predicting house prices. To illustrate how CSL can be use
as an interpretable algorithm we use a dataset of house rental
prices in New York City. We have 4 input variables: latitude,
longitude, number of bedrooms and number of bathrooms.
Two make it really simple to visualize and interpet, the oracle
was given two of the variables: latitude and longitude. The
CSL model found a solution in which the oracle parition
the space of latitude and longitude in 3 regions (see top of
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Figure 1) and for each region a tree of depth 5 predicts the
house prices. This simple solution get an R2 of 0.68. As a
comparison, the best single model of a tree of depth 5 has an
R2 of 0.62 and a random forest with 500 trees (of depth 9)
has an R2 of 0.72. To find the best random forest we did grid
search on the number of variables and the depth of the trees.

The simple solution of a tree of depth 5 is interpretable
since a tree of depth 5 can be easily examined. Also, 3 trees of
depth 5 can be easily examined as well as the 2 dimensional
space where the oracle split the restricted input regions.
On the other hand, the random forest with 500 trees and
unrestricted depth would be harder to interpret.

4 THEORETICAL RESULTS

In this section, due to space constrains, we will summarize
the main theoretical results obtained and presented in the
supplemental materials. The main result, proven on Theorem
S1, establishes that a Super Learner given by the function fn
will converge to the oracle f0n, the true underlying function
generator, at a rate at least faster than Op(n

−1/4) being
n the number of observations. Additionally, we provided
a theoretical analysis of the variance-bias tradeoff incur
for different choices of the meta learning algorithm and
the base learners. Specifically, if one considers relatively
large meta-learning models, as is easily the case for our
conditional super-learner, then there is a risk that one
worsens the performance relative to simpler meta-learning
models. Therefore, the most sensible strategy is to define a
sequence of Super Learner models where one goes from the
simplest (cross-validation) to more complex (trees, neural
networks, etc). This process is referred as double super-
learning and a detailed discussion is presented in the
supplemental materials. We then finalized by presenting an
oracle inequality for the double super-learner showing that
it is asymptotically equivalent to a super-learner that knows
the true oracle choice of meta-learning. Additionally, we
also presented a finite sample oracle inequality for an ε-net
double super-learner. These results establish that the double
super-learner also approximates the oracle choice in its meta-
learning model at a rate at least as fast as n−1/4.We refer
those readers interested in diving deeper into our theoretical
analysis to the supplemental materials.

5 DISCUSSION

In the present article we introduced the CSL, provided
extensive empirical simulations and baseline results in a
wide variety of problems and mathematical proofs about its
convergence rates (see supplemental material). Additionally,
to further the understanding of the CSL, let us highlight
different relationships and connections that it has with
different algorithms. First, please note that o(x) partitions
the space in K regions or subsets {R}K1 where the models
{Fk(x)}K1 are used for prediction; ergo establishing the
connection between meta learning and generalized parti-
tioning machines through the CSL. Different from recursive
algorithms like CART, MediBoost or the Additive Tree [13],
[20], [21], CSL partitions defined by the oracle can have
complex forms and are not forced to be perpendicular to
the covariates. Additionally, CSL(x) also generalizes the

strategy of using cross validation to select the best model.
Please note that if in equation 1 we force o(x) = c where c is
a constant ∈ {1..K} then the solution to 4, ô(x), just selects
the model that minimizes the cross validation error. As such,
using cross validation to select the best model is the simplest
case of CSL(x) where the meta learner predicts a constant
regardless of the covariates. CSL can also be thought as a
generalization of the K-means algorithm. If the expert models
are constant, and the oracle has infinity capacity to always
be able to assign each observation to the best mean, then
CSL becomes the K-mean algorithm. Another algorithm that
is closely related to the CSL is the Hierarchical Mixture of
Experts(HME) [22]. In both cases, a hierarchical topology is
found. In the HME, however, this hierarchy depends on
a parametric specification of the probability distribution
while the CSL can estimate the hierarchical topology in a
non parametric fashion with a rich set of meta algorithms
that can include linear models, trees or neural networks.
Equally important, the HME predicts with a combination
of experts which harms interpretability while the CSL does
not. Finally, as shown above, due to its archictecure, CSL
is a non parametric hierarchical algorithm and performs
quite well for this type of problems. Besides, these theoretical
connections with other algorithms, there are some important
technical points that can help understand the CSL and point
to possible avenues for its improvement. In our experiments,
we initialized the CSL by picking the type of experts (e.g
trees, linear models, etc) and a random subset of the data
to fit each expert to introduce diversity. Please note that
as its counterpart (K-means), CSL can get stuck in local
minimum. Therefore we ran the algorithm a few times in
our experiments and used a validation set (different than
the test set) to select the best solution. Researching better
initialization methods will likely improve the performance
of the algorithm. While running CSL, it is often the case that
some of the experts will collapse (e.g model selection). This
happens when the range of values predicted by o(x) is less
than K or similarly when the size of {x : o(x) = k} becomes
very small. In these cases we re-adjust the size of K as the
algorithm runs. This behaviour is highly desirable because
it allows the end user to specify a a large number of bases
and the algorithm will provide model selection provided
enough regularization is applied. Regarding regularization,
there are different ways to proceed with the CSL. One would
be to penalize over complex meta learners using the specific
hyper-parameters for the chosen model. Additionally, please
note that we can use the step when we are fitting the experts
to introduce regularization. If the oracle o(x) also estimates
probability of an observation belonging to a model (e.g.
logistic regression), then we can use p(0(x) = k,x) to
introduce similarity among the experts when we are fitting
them, specially around the boundaries defined by the oracle.
Other ways of regularization can also be explored in the
future, given that the partition nature of the CSL makes the
local models data hungry. In that sense, global regularizations
for the local parameters like that explored at the Highly
Adaptive Lasso estimators seem to be appealing and will
be investigated in the future [23]. Finally, we would like to
finish our discussion with some notes on the implications that
the CSL can have on interpretability. Post hoc local model
explainability is a popular topic today with algorithms like
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LIME or SHAP that build models around specific points [24],
[25]. Specifically, LIME explains a complex model behaviour
for a specific observation by perturbing the covariates around
the point, getting the models prediction and then fitting
a linear model. Although the specific limitations of this
approach to recover the true underlying explanations are
beyond the scope of our article, we must say that at its best
LIME provides local explanations [25]. For many applications
one would like to have global explanation of the models [13],
[26]. The CSL is then a hybrid between the idea of using
one very simple model for all observations and building a
different model for each. By finding a finite number of simple
models that will be used for predictions (e.g linear models),
it then provides a sense of global understanding of what
variables are important and their contribution.

6 CONCLUSIONS

In this work we introduced the CSL algorithm. We proved
theoretically and empirically how we can extend the idea of
meta learning and develop an algorithm that outperforms
the naive use of cross validation to select the best model.We
proved that the CSL has a rate of convergance faster than
Op(n

−1/4). More over, we have obtained very interesting
and practical results. For instance, CSL outperformed stack-
ing in the datasets analyzed. Additionally, it significantly
outperformed Random Forests or Gradient Boosting in
the analysis of Hierarchical Data. Finally, its connection to
interpretability and other algorithms were highlighted to
deepen our understanding of its performance. As such, the
CSL is an algorithm suited for the analysis of datasets in
high stake domains where hierarchical models, accuracy and
intepretability are of paramount importance.
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