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Adversarial attacks derail models by crafting malicious inputs. Image classifiers mislabel those inputs — visually4

indistinguishable from ordinary ones — with high confidence.5

In comparison to the extensive literature on adversarial attacks for classifiers [1, 2, 3, 4, 5, 6], attacks for autoencoders6

are mostly unexplored, possibly because those attacks are hard both to perform and to assess [7, 8]. Still, as autoencoders7

are advanced as powerful schemes for compressing information [9], attacks on them are potentially at least as dangerous8

as attacks on classifiers.9

Evaluating generative models is hard [10], there are no clear-cut success criteria for autoencoder reconstruction, and10

therefore, neither for the attack. We bypass that difficulty by analyzing how inputs and outputs differ across varying11

compromises between distorting the input and approaching the target. Altough, autoencoders admit many variations:12

sparse [11], denoising [12], variational [13, 14], Wasserstein [15], symmetric [16], etc, we are particularly interested on13

Variational Autoencoders (VAEs) since they behave as both autoencoders and as generative models, which brought14

them the community’s attention.15

Following up on [7], we propose a scheme to attack different VAEs, as well as a quantitative evaluation framework for16

the attacks that bypass the need for a success criterion. We compare three kinds of autoencoders: simple variational17

autoencoders (with fully-connected layers), convolutional variational autoencoders, and DRAW — a recently proposed18

recurrent variational autoencoder with an attention mechanism [17]. We show that the latter is more resistant to the19

attacks, and that its recurrent and attention mechanism both contribute to the resistance. We run all — statistically20

validated — experiments in three datasets (MNIST, SVHN, and CelebA) and show that our quantitative assessment21

correlates well with a qualitative perception of the attacks.22

Tabacof et al. [7] introduced attacks on autoencoders, showing that they are possible and much harder than attacks on23

classifiers. They proposed the graphs we call Distortion–Distortion plots here and evaluated attack success by visual24

inspection of those graphs. Right after, Kos et al. [8] followed up with a work that attacked both the latent representation25

and the output of VAE–GAN autoencoders.26

We explore here two types of attacks on VAEs: 1) input attack where the optimization goal is to find the distortion27

which minimizes the `2 distance between the target and the VAE’s reconstruction image; and 2) latent attack where the28

goal is to minimize the Kullback–Leibler divergence between the target’s and the VAE’s resulting latent variables. In29

both methods, a regularization term is added to the optimization goal in order to keep the distortion norm small.30

However, there is no sharp criterion to define whether the attack succeeded. We address this shortcoming with the31

AUDDC (Area under Distortion–Distortion Curve). For a given original and target pair, we compute different results,32

with different approximation compromises. The Distortion–Distortion plots show, for each attempt, how much we33

distorted the original and how much we approached the target (both measured by `2). We add limiting lines to the plot:34

no distortion added (and original reconstruction) at the leftmost/gray and topmost/orange lines; the `2-distance between35

the target and the reconstruction of the target by the model at the bottommost/red line; the `2-distance between the36

original and target image. Those limits represent, respectively, the starting point, the intrinsic limitation of the model,37

and the maximum “sensible” distortion (which allows going from the original to the target directly). We normalize38

the graph so that the distance between those lines is 1. The AUDDC is the area under the curve given by the linear39

interpolation of the points. The closer this area is to 1, the more resistant the model was to the attack (and the less40

successful the attack was) (Figure 1).41

We employed three datasets: MNIST [18], SVHN [19], and CelebA [20]. We evaluated four models: VAE with only42

fully-connected layers (VAE); VAE with (de)convolutional layers (CVAE); the recurrent autoencoder DRAW [17]43

without and with its attention mechanism and different number of recurrent steps. For each pair model–dataset,44

we run 20 attacks with different pairs of image–target. For the quantitative analysis, we averaged the AUDDC45
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Figure 1: Left: the proposed metric: Area Under the Distortion–Distortion Curve (AUDDC). Right: visualization of a
single point (red dot) of the left plot.

Table 1: Average ± 95%-confidence interval of AUDDC (times 100) for all models and
datasets. Higher values indicate higher resistance to the attacks.

VAE CVAE DRAW* DRAW DRAW* DRAW
Steps — — 1 1 16 16 Average

Attacks on latent representation

MNIST 27 ± 2 35 ± 3 27 ± 1 35 ± 3 71 ± 5 91 ± 3 47 ± 3
SVHN 19 ± 1 18 ± 1 09 ± 1 27 ± 2 74 ± 6 96 ± 2 41 ± 4
CelebA 31 ± 1 28 ± 1 21 ± 2 36 ± 1 81 ± 4 97 ± 1 49 ± 4
Average 25 ± 1 27 ± 2 19 ± 2 33 ± 1 75 ± 3 95 ± 1 46 ± 2

Attacks on output

MNIST 35 ± 2 56 ± 3 38 ± 2 48 ± 4 29 ± 3 69 ± 4 46 ± 2
SVHN 19 ± 1 19 ± 2 13 ± 1 27 ± 2 21 ± 2 34 ± 2 22 ± 1
CelebA 27 ± 1 24 ± 1 31 ± 3 35 ± 1 29 ± 2 40 ± 1 31 ± 1
Average 27 ± 1 33 ± 3 27 ± 2 37 ± 2 26 ± 1 47 ± 3 33 ± 1

All attacks

MNIST 31 ± 2 45 ± 3 32 ± 2 42 ± 3 50 ± 5 80 ± 3 47 ± 2
SVHN 19 ± 1 19 ± 1 11 ± 1 27 ± 1 47 ± 7 65 ± 7 31 ± 2
CelebA 29 ± 1 26 ± 1 26 ± 2 36 ± 1 55 ± 6 68 ± 7 40 ± 2
Average 26 ± 1 30 ± 2 23 ± 1 35 ± 1 51 ± 4 71 ± 3 39 ± 1

* Attention mechanism disabled.

for the chosen factors. To check which factors lead to significant influence, we used a multi-way ANOVA, with46

second-order interactions, and post-hoc Tukey honest significant differences which found significant differences (all47

p-values < 0.015) for all pairs of levels of all factors shown on the Table 1.48

Attacking auto-encoders is relatively difficult if compared to attacking classifiers, where the distortions can be invisible49

to the human eye. Interestingly, DRAW, in particular, was much more resistant to our attacks. No attack succeed in50

reconstructing the target image well without incurring in immediately visible distortions to the input. Still, not all51

attempts are equal: some models are significantly more resistant than others. The AUDDC metric allows to quantify52

that resistance, bypassing the need to establish a clear-cut criterion of success for the attacks, and it correlates well with53

the qualitative results.54

The code to reproduce all experiments will be made available after review.55
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