
Hover: A Wearable Object Identification System for Audio Augmented Reality Interactions 

Augmented reality (AR) has recently begun to gain popularity and become accessible to mainstream 

audiences. Companies such as Microsoft, Google, and Magic Leap are developing platforms that bring 

augmented reality to the masses through smartphones and head-mounted devices. This technology has 

many potential uses, some promising ones being guiding users through tasks that they may not be experts 

in [3], or overlaying helpful information on objects[4]. In these cases, AR systems provide access to an 

object’s contextual information- or additional information linked to an object in the physical world.  

However, even with all the advances of today’s AR systems, users generally report that these are too 

intrusive, distracting, and cumbersome for daily use [1,2]. As an example, a phone-based AR application 

that uses the display to overlay information about an object, needs the phone to be between the user and an 

object of interest.  This can distract a user from his or her surroundings, obstruct a user’s field of view, and 

potentially interrupt them on whatever activity they were doing beforehand (if the phone is not in an easily 

accessible place). On the other hand, the glasses form factor, such as the one that the Hololens has, alleviates 

some of these problems by putting the contextual information directly in a person’s field of view at any 

time.  However, the person always needs to carry the typically bulky headset with them to have access to 

the information. Adding to this, the field of view of current devices is small. Lastly, apart from focusing on 

these form factors, most of the current systems do not take advantage of sensors other than cameras, which 

can adversely affect their object detection performance in varied lighting and with visually similar objects.  

Based on the existing ecosystem, we frame the following question: Can we find a multi-modal and 

seamless way to access contextual information tied to objects in our environment? To explore this question, 

we design, implement, and test a sensor-fusion powered wearable object identification system which allows 

users to “hover” their hands over objects of interest and access contextual information that is tied to the 

object through voice interactions with an intelligent assistant (we use Mycroft[9] and custom developed 

skills, with a bone conduction headset for discreet communication). We wanted the system to give discreet 

access to AR contextual information without the need of phones or headsets.  We called this system Hover.   
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Prototype for the Hover system.  Use case: user is scanning an item 

with the Hover system on his wrist 

and a bone conduction headset.  

 

Hover is a unique system that uses a fusion of sensors to perform the identification of an object under 

a variety of conditions and is capable of discerning between visually similar objects. Among these sensors 

there is a camera (operating in the visible and infrared spectrum), a small solid-state RADAR, and multi-

spectral (visible and near infra-red spectrum) light spectroscopy sensors. In our system we extract features 

from each sensing modality, normalize them according to their sensor of origin and combine them into one 

feature vector.  We then pass this feature vector into a classifier. Some of the features we extracted were 

Bag of Visual Words histograms[10] for images, High Resolution Range Profiles[12] and Range-Doppler 

maps[11] for the radar, and the root mean square of the readings for the spectrometers. For the classifier 

we evaluated a Support Vector Machine[5], a Random Forest[6,7], and a K-Nearest Neighbors[8] to see 

which could deal more easily with classifying the multi-modal data. We found that without any optimization 



the Random Forest classifier (RFC) gives us the best performance of the lot. Utilizing the RFC, we found 

that the Hover’s sensor fusion system is slightly better (78% vs. 75% accuracy) than a plain camera without 

any sort of optimization in a classification task of 9 objects. 
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Fusion System 

without RADAR 

 

 

We note that the performance of the system could possibly be improved if we replaced the RADAR 

module with one that has more bandwidth and range resolution, or we evaluated different RADAR features.  

The features we selected, in combination with the RADAR hardware we utilized, introduced confusion into 

the classification as can be seen in figure 6. Additionally, we note that the performance could be improved 

further if we install a broadband Infra-Red (IR) LED for our Near IR Spectrometer, rather than the one used 

mistakenly in testing, which operates in one specific frequency rather than throughout the range the sensor 

reads, and therefore also introduces confusion into the system.  Additionally, we are currently exploring the 

possibility of inputting the raw sensor fusion signals into a neural network architecture to see if learned 

features, rather than hand crafted ones, could improve the overall performance of the system. 

With regards to the user interaction aspect, we developed an identification task in which we placed 

participants in a predetermined environment to identify a set of objects with a certain device. Once the 

device identified the object it proceeded to give information about it through an assistant in the device.  

Participants were asked to repeat the identification task with Hover, Hololens, and an Android phone. The 

task simulated a situation where a user needs to gather information, like in a museum or while shopping.  

Participants were asked a set of questions and we collected answers in a 5-point Likert scale, to gage their 

individual and overall experience with each device. After analyzing the results, we found that Hover is 

comparably cumbersome with a mobile phone, and less cumbersome than the head-worn Hololens. Also, 

Hover is comparably immersive to the Hololens. Hover is also individually less interruptive than a phone 

but was perceived as just as interruptive as all the other devices in the study. It is comparable in intrusiveness 

with a mobile phone, and that it is less intrusive than the head-worn Hololens.  

We have identified key areas of improvement for future work. The most prevalent is the form 

factor, which could be improved by streamlining the electronics into a smaller integrated board, shrinking 

the overall footprint.  Shrinking the size of the device would improve the overall user experience as the 

device would conform to a wrist and feel more natural.  To make it easier for new users, we also will attach 

a laser pointer so that users can see which objects are in Hover’s frame of view. Another component that 
could be improved in future iterations is the intelligent assistant. Currently, the Intelligent Assistant only 

gives the contextual information that was given when training an object unto the system. We are looking 

into how to make dynamic information retrieval about a topic/object and how to process it and make 

inferences from it to answer pertinent questions or doubts that users may have. We intend to make this 

component the focus of our future research, as an assistant with dynamic knowledge acquisition, could be 

utilized in a variety of activities such as interactive grocery shopping, interactive dieting systems, and 

interactive usage tutorials based on a scanned device of interest. 
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