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Abstract

We introduce Dopamine, a compact and flexible framework for speculative Rein-
forcement Learning research. Our framework targets research involving radical
changes from established baselines while emphasizing simplicity, robustness, and
reproducibility.

1 Introduction

Over the past decade there has been a continual growth in Reinforcement Learning (RL) research,
resulting in many results with a large variety of agent types and environments. Many of these
advances have come out of radical departures from the established algorithms of the time. Some
notable examples are the use of replay memories Mnih et al. (2015), large-scale distributed training
Espeholt et al. (2018), and distributional methods Bellemare et al. (2017). Because of the significant
departure from traditional methods, the authors of these improvements typically implement their
algorithms separately from any existing framework, which becomes a problem for reusability and
reproducibility. It is unfortunately too common for these “original-author” implementations to never
be open-sourced, resulting in multiple re-implementations of the same algorithm.

We introduce Dopamine, a new framework for the kind of speculative RL research that has driven
these radical discoveries. By focusing on a specified type of RL research, our framework is compact
and simple to modify, allowing researchers to try out radical new ideas without having to commit to a
larger (and likely more complicated) framework. In addition, we provide state-of-the-art algorithms
and ready-to-go results for easy comparison with new algorithms. In this paper we discuss some of
the design choices we made when building this framework and the resulting qualities they produce.

2 Compactness and simplicity

Our framework focuses on value-based methods evaluated on the Atari games of the Arcade Learning
Environment (ALE) Bellemare et al. (2013). The ALE is a mature and well understood benchmark
that has become a standard for new RL algorithms. The 60 Atari games it supports provide a rich
and diverse set of environments that pose a variety of challenges to agents. Indeed, they often help
highlight the strenghts and weaknesses of different algorithms relative to each other.

In addition, we focus our framework on value-based agents. These design choices allow us to provide
a codebase that is compact and easy to understand. Further, value-based agents demand fewer compu-
tational resources than typical policy-based methods. Dopamine provides stable implementations
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Figure 1: Baseline agents on SpaceInvaders and Seaquest

of DQN Mnih et al. (2015), C51 Bellemare et al. (2017), a simplified version of Rainbow Hessel
et al. (2018), and Implicit Quantile Networks Dabney et al. (2018). Rainbow and Implicit Quantile
Networks are current state-of-the-art methods.

Our implementation consists of only around 3000 lines of code spread over 11 python files (not
including tests). This includes extensive inline documentation that help clarify the logic of the
different components. We have written the code in a way that makes it very easy for both newcomers
and experienced researchers to understand the inner workings, and begin modifying to try out new
ideas. Nonetheless, our framework also makes it easy to train one of the provided agents with just a
few lines of Python code.

In addition to exporting standard RL training statistics to Tensorboard, Dopmaine comes with a set of
colabs that make it easy to plot the results against any of the provided baselines.

3 Reproducibility

We are particularly sensitive to the importance of reproducibility in RL research, as has been argued
in Islam et al. (2017). The following features of Dopamine help us satisfy this important requirement.

• We have followed the recommendations given by Machado et al. (2018) on standardizing
evaluation on the ALE.

• For each agent provided, we include the hyperparameter configurations that match those
used in the original papers.

• We provide an “updated” set of configuration files for each agent that unifies the hyper-
parameter settings amongst them. This enables apples-to-apples comparison between the
different agents.

• We provide the full training data comparing all provided agents on all 60 games from the
ALE for facilitating the benchmarking of new agents. These are available as Python pickle
files (for agents trained with Dopamine) and as JSON data files (for comparison with agents
trained in other frameworks). Figure 1 plots the returns of our provided agents for two Atari
games.

4 Conclusion

Some of the most significant advances in Reinforcement Learning have come as a result of dramatic
departures from established methods. Unfortunately many of these are not accompanied with open-
sourced author-approved implementations which is problematic for reproducibility and for promoting
further improvements on new algorithms. Dopamine aims to fill this gap by providing a compact
and flexible framework. We believe our design choices make Dopamine a strong starting point for
newcomers and experienced researchers alike; our hope is that Dopamine’s flexibility and ease-of-use
will empower researchers to try out new ideas - both incremental and radical - very quickly, and help
in the advance of scientific research.
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