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1 Abstract

This work introduces a new class of kernel machines: the Support fuzzy-sets machines. This machines
can be used to solve machine learning tasks, like classification, regression or clustering, on data
with point-wise uncertainty. We advocate the use of fuzzy set for modeling the uncertainty around
the vicinity of observations, and for incorporating those uncertainties into the learning machine.
Support fuzzy-sets machines are defined by kernel gram (covariance) matrices defined by kernel on
fuzzy sets, which are special kind of real-valued (kernel) functions whose domain is the set of all
fuzzy sets, i.e., k : X × X → R, where X is a fuzzy set. Under fuzzy set modeling, such kernels
can be used to estimate covariance matrices for observations with point-wise uncertainty and for
estimating similarity measures for that kind of data. Previous research showed in fact, an improved
performance in learning machines when is considered the information given by the neighborhood
around observations, see for example local learning [Bottou and Vapnik, 1992], Vicinal kernels
[Vapnik, 1995], Vicinal risk minimization [Chapelle et al., 2001] and the RBF network. More recent
approaches consider kernel machines defined by kernels on probability measures [Muandet et al.,
2012]. Support Fuzzy-set Machines thanks to the reproducing theorem of kernel methods learn
f =

∑
i αik(X, ) in a high dimensional Hilbert space called Reproducing Kernel Hilbert Space,

where the support fuzzy-sets is the set given by all the fuzzy sets such the correspondent αi > 0.
Several positive definite kernels on fuzzy sets can be used for training the proposed kernel machines,
as for example: The cross product kernel on fuzzy sets [Guevara et al., 2017], the intersection
kernel on fuzzy sets, [Guevara et al., 2014], the non-singleton kernel on fuzzy sets, [Guevara et al.,
2013] or the Distance-based kernels on fuzzy sets ([Guevara et al., 2015]).

Ontic and epistemic interpretation of uncertainty by fuzzy sets Fuzzy sets (FS) were intro-
duced by Lotfi A. Zadeh in 1965 [Zadeh, 1965], those sets differentiate from classical sets because
they have a L-valued characteristic function, where L is a complete lattice. For instance, if L is the
unit interval, one can define a degree of membership between that interval for each element in the set.
In that sense, a fuzzy set X is completely characterized by its membership function:X : Ω→ [0, 1],
where X(x) for some x ∈ Ω is interpreted as the degree of membership of x to the fuzzy set with
that membership function. Fuzzy sets are used to model uncertainty in observational data, based on
either ontic or epistemic interpretation. Ontic, in the sense that point-wise uncertainties can be treated
as entities, e.g. modeling set-valued predictors in data. Epistemic, in the sense that a fuzzy set is
a model for incomplete information on single-valued predictors, i.e., a model for non-precise data.
Ontic interpretation enables to say that fuzzy sets are elements with some underlying probabilistic law
and that they are the realization of fuzzy-valued random variables [Kwakernaak, 1978]. Examples of
ontic point of view fuzzy sets modeling are a region within a gray-scale image, a frequency profile,
fuzzy clusters, a convolutional kernel on deep learning, etc. From the epistemic point of view, FS
can be used to model a region within images describing the no well-known location of an object, for
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example, a statement describing the (unknown) age of a person, a nested set of intervals containing
some unknown deterministic value [Hüllermeier, 2005, Dubois, 2011].

Figure 1: Experimental datasets

Methodology for constructing a Support Fuzzy-Set Machine
In practical ML tasks like classification or regression, membership
functions for predictors can be constructed from expert’s knowl-
edge or using data-driven approaches (from histograms or quantile
functions, for example) without assuming any probabilistic law
for the data generation process. Then, a kernel on fuzzy sets can
be selected for estimating the covariance matrix among the fuzzi-
fied version of the data. Finally, a kernel machine algorithm, like
Gaussian process regression or support vector machine can be used
without modification with the kernel on fuzzy sets.

Supervised classification experiments on data with noise in the
predictors We used eight datasets, listed in Figure 1, from Keel
repository, a percentage of the predictor values of those datasets
were corrupted by noise, the percentage is indicated by the substring
"5", "10", "15" or "20" in the dataset’s name. the first four datasets
with suffix "nn" indicate that the noise corruption occurs in for both training and testing values. the
last four datasets with suffix "nc" indicate that only the training data was corrupted by noise. We used
two "fuzzification" approaches for constructing fuzzy sets for this data: the first one was given by
estimating Gaussian membership functions for each predictor, we learn the parameter of those fuzzy
sets from the values of each predictor. The second approach defines a fuzzy set for each predictor
given by a function that interpolates the empirical distribution of the values of each predictor. Using
the estimated membership functions, we estimated a second data set of membership degrees, such a
dataset gives information about the certainty of each predictor value on the original dataset. As the
nature of the problem was a classification problem, we define a support fuzzy-set machine as being a
support vector machine with a cross product kernel on fuzzy sets. Figures 1 shows the experimental
results in terms of the Area Under the Curve (AUC) metric estimated by nested cross-validation.
Figure a) shows the results for datasets with the suffix "nn" and Figure b) shows results for datasets
with suffix "nc". The two worst performers are an SVM with linear kernel (light blue dots) and an
SVM with RBF kernel (orange dots). It is possible to observe that when the noise level increases
the AUC decrement for those SVMs. On the other side, support fuzzy-set machines are the best
performers (see [Guevara et al., 2017] for a detailed description of the kernels used on this machines).
The suffix "I" or "II" on the legend of Figure 1 indicates whether the first or second fuzzification was
used for estimating the fuzzy sets used by a particular kernel on fuzzy sets. It is possible to observe

that a support fuzzy-set machine is more noise resistant in contrast with a classical support vector
machine for this task. All the kernels on fuzzy sets used in this experiment show a noise resistance
property.

Discussion and conclusion Support fuzzy-set machines bring a way to include and model point-
wise uncertainty into kernel machines. Those learning machines use a kernel on fuzzy sets for
estimating a (covariance) similarity matrix between fuzzy samples. Experimental results on noisy
datasets show the potential use of those learning machines for dealing with noisy corrupted datasets.
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