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1 Introduction

Generative adversarial networks (GANs) [1], offer an approach to generative modeling using game-theoretic training
schemes to implicitly learn a given probability density. Under this setting two models are trained jointly while the
generator tries to map low dimensional samples from some simple prior to higher-dimensional structured data. The
discriminator, on the other hand, tries to determine whether samples are genuine or not. To date, most outstanding
results using the described setting were obtained for generative modeling of images [2, 3]. Relevant applications of
GANs for audio also exist [4, 5]. However, adversarially learned video modeling remains an open problem.

A common strategy in recent attempts on training GANs for natural scenes generation focuses on splitting the task into
simpler parts. In [6], for instance, there are independent modules for foreground and background modeling. In both [7]
and [8], motion and frame content are learned by different parts of the architecture. In turn, in [9] authors tackle the
problem by conditioning generation on optical flows provided a priori.

In this work, we exploit the idea of splitting the video generation process into content and motion modeling, using two
independent learning phases. Particularly, we leverage recent advances in GANs for images and propose a two-step
scheme in which a generator of frames is trained in advance and then a recurrent model is trained to learn how to
traverse the manifold induced by the pre-trained frames generator.

Figure 1: Graphical representation of the video generator.
Pink blocks represent the pre-trained frame generator.

Figure 2: Samples from the frame generator trained on
the 3 bouncing balls dataset.

2 Proposed approach

The method proposed here relies on two main components: (i) a convolutional frames generator GF , and (ii) a recurrent
model for generating videos GV . The goal is to disentangle image quality and temporal coherence components of a
video and letting each of the generative models to individually focus in one of these two aspects. By doing so, the
performance of the model relies on the capability of the frame generator to provide good and diverse images as well as
on the sequence generator to be able to sequentially sample frames (i.e. navigate through the frames manifold induced
by GF ) in a coherent order.

One of the main challenges in such an approach is to be able to train GF with enough diversity. Several approaches
have been proposed in recent literature targeting mode dropping in the GAN setting [10]. In our experiments, we found
the multiple-discriminators approach introduced in [11] to yield stability during training, sample quality and diversity.
Training of GF was performed with 48 discriminators. An architecture similar to DCGAN [2] was employed.
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GV is composed of three main building blocks: an encoding stack of dense layers responsible to map a noise vector zv
into a sequence of high-dimensional vectors. This sequence is fed into a bi-directional recurrent block that computes
a sequence of temporally dependent zFi noise vectors which are then used to sample from GF . Finally, for the case
of videos with length N , the output is obtained by sampling N times from the frames generator and ordering the
samples to form the final sequence F = (F1, . . . , FN ). The described framework is represented in Fig. 1. The encoder
(trapezoid) is parametrized by fully-connected layers, and the recurrent model by a two-layer bi-directional LSTM.

The scheme proposed in [11] was also used to train the sequence generator. In this case, we utilized 16 discriminators
which inputs are reduced-dimension random projections of each frame composing the video input. It is important to
highlight that GF ’s parameters are kept unchanged during the training of GV .

Architectures used for the video generation GAN were: 1) Generator: FC[100 × 512 × 1024 × 2048 × 3840] →
Bi-LSTM[30 × 128, 30 × 256] → FC[512, 100]; 2) Discriminator: similar to [2] but with 3D convolutions in the
place of 2D in order to take into account the temporal dimension. Random projections were implemented as norm 1
convolutions.

3 Experiments

We built 100,000 samples from bouncing balls data2 [12] consisting of 30 frames-long videos with three balls bouncing.
Randomly sampled frames from the same set of videos were used to train the frames generator in advance. RMSprop
optimizer with learning rate equal to 0.0002 and 0.0003 was employed to train GV and GF , respectively. GF was
trained for 50 epochs with mini-batches of size 64, while 15 epochs were used for GV with mini-batches of size 8. A
single NVIDIA GTX 1080Ti was used for training.

Results. Samples from the frame generator are shown in Fig. 2. By visual inspection, we notice that good quality and
diversity were obtained. In Fig. 3b, random samples from GV are shown. Fig. 3a shows three randomly selected videos
from the training dataset for comparison. Time increases from left to right. Visual inspection of generated sequences of
frames indicates that both quality of individual frames (as ensured by the frame generator) and temporal coherence
were close to original samples. It is also possible to notice that the video samples generated are diverse, which suggests
that the video generator did not suffer from strong mode collapse.

(a) Samples from the training data.

(b) Samples of videos generated by the proposed approach.

Figure 3: Generated and real video samples. Time increases from left to right.

4 Conclusion and future directions

We introduced a novel approach for unsupervised video generation using GANs. The method aims to break the problem
into frame and sequence generation, and to solve them separately, thus making both tasks easier. Generated video
samples presented good quality and diversity per frame as well as temporal coherence. As future work, we intend to
apply the same approach to different video datasets and explore objective video quality metrics for a more appropriate
assessment of results. Moreover, pre-training GF and also allowing it to be fine-tuned during GV training could be
beneficial to further improve frames quality. We believe the multiple-discriminator setting plays a relevant role in terms
of diversity and sample quality. Hence, a distributed implementation of the described approach enabling us to use more
discriminators is also a direction of future investigation.

2https://github.com/zhegan27/TSBN_code_NIPS2015/blob/master/bouncing_balls/data/data_handler_
bouncing_balls.py
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