
Non-synergistic VAE

Gonzalo Barrientos
Department of Computer Science

University College London
London, UK

gonzalo.ayquipa.16@ucl.ac.uk

Cristina Calnegru
Department of Computer Science

University College London
London, UK

florina.calnegru.16@ucl.ac.uk

Abstract

Learning disentangling representations of the independent factors of variations that explain
the data in an unsupervised setting is still a major challenge. In the following paper we
address the task of disentanglement and introduce a new state-of-the-art approach called
Non-synergistic variational Autoencoder (Non-Syn VAE). Our model draws inspiration
from population coding, where the notion of synergy arises when we describe the encoded
information by neurons in the form of responses from the stimuli. If those responses convey
more information together than separate as independent sources of encoding information,they
are acting synergetically. By penalizing the synergistic information within the latents we
encourage information independence and by doing that disentangle the latent factors. In
addition, we qualitatively compare our model with Factor VAE.

1 Introduction

Our world is hierarchical and compositional, humans can generalise better since we use primitive concepts
that allow us to create complex representations [10]. Towards the creation of truly intelligent systems,
they should learn in a similar way resulting in an increase of their performance since they would capture
the underlying factors of variation of the data [1, 9, 3]. According to [15], a compositional representation
should create new elements from the combination of primitive concepts resulting in a infinite number of new
representations. Furthermore, a disentangled representations is defined as one where single latent variables
are sensitive to changes in generative factors, while being invariant to changes in other factors. [1].

2 Model

The original Variational autoencoder framework [14, 17] has been used for the task mentioned before, by
modifying the original ELBO formulation [11, 13, 4]; as well as the Generative Adversarial Networks [7] by
encouraging the mutual information between the latents and the output of the generator [5]. To understand
our model, we need first to describe Synergy [6, 18] being a popular notion of it as how much the whole
is greater than the sum of its parts. It’s common to describe it with the XOR gate, since we need two
independent variables to fully specified the value of the output. Our hypothesis suggest that by penalising
the synergistic information we encourage the model to disentangle the factors of variation. Intuitively, this
means that if two latents Z1 and Z2 will. Computing the multivariate synergistic information is an ongoing
topic of research [18, 19, 2, 8], however we decided to use the metric defined in [8], shown in Equation 1,
where Ai is a non-empty subset of {Z1, Z2, ..., Zd} and the Imax (second term on the RHS) is defined as
the specific mutual information (MI) between each outcome x ∈ X and the subset Ai that maximises the
specific mutual information. Notably, the MI can be expressed in terms of the KL divergence.

Smax({Z1, Z2, ..., Zd};X) = I(Z;X)−
∑
x∈X

p(X = x)max
i
I(Ai;X = x) (1)
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From [12], we know that the KL term in the ELBO loss is decomposed in DKL

[
qφ(zn) ‖ p(zn)

]
+ I(xn; z).

If we penalise the synergy defined in Eq 1, we will be penalising the MI term which is not desirable for this
task [13]. Therefore, we used only Imax, which means maximising the subset of latents with the most amount
of MI per outcome. Since it’s cumbersome to maximise and minimise the latent variables, we decided to
penalise the subset of latents with the minimum specific MI (ie. Aw). It’s easy to see that this new equation
is still a lower bound on the log likelihood p(x).

Lnew(θ, φ, x) = Eqφ(z|x)
[
log pθ(x|z)

]
−DKL

[
qφ(z|x) ‖ p(z)

]︸ ︷︷ ︸
Lelbo

−αDKL

[
qφ(Aw|x) ‖ p(Aw)

]︸ ︷︷ ︸
α∗Imax

(2)

Algorithm 1 Non Syn VAE

Input: Observations (x(i))Ni=1, batch size m, latent dimension d, weight of synergy loss α, discount factor
ω, optimiser optim, function get_index_greedy computes Aw per batch using a greedy policy and ω.

θ, φ← Initialise VAE parameters
repeat

3: x(i)← Random minibatch B of size m, i ∈ B
φ, θ← optim(∇θ,φLelbo(θ, φ;x)) . Gradients of ELBO minibatch, see Eq.2
x′(i)← Random minibatch B’ of size m, i ∈ B′

6: worst_index← get_index_greedy(mu, logvar, ω) . mu,logvar ∼ Encoder(x′(i), φ)
Lsyn← α ∗ Imax(mu, logvar, worst_index) . See Eq.2 for Imax function
φ← optim(∇φLsyn(φ;x′(i))) . Gradients of Syn loss minibatch

9: until convergence of objective

3 Experiments

For disentanglement, the dataset most commonly used is the dsprites dataset [16], which consists on 2D
shapes generated from independent latent factors. We used the same architecture and optimizer as Factor
VAE [13]. In Figure 1 (left), we see clearly that our model disentangles the factors of variation. Likewise, on
the right we see the mean activation of each active latent averaged across shapes, rotations and scales.

Figure 1: Left: Traverse of latents (110k steps). Right: Mean activations (110k steps)

4 Conclusions and Future work

We described a model that uses a novel approach inspired by the information theory and neuroscience
fields to achieve the disentanglement of the underlying factor of variations in the data. After looking at the
results,we can state that our model achieved state-of-the-art results, with a performance close to FactorVAE.
As future work, we will explore other synergy metrics in the literature and will test using other datasets.
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