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I. INTRODUCTION

The use of robots for complex manipulation tasks in
collaboration with humans is currently challenged by the
limited ability of robots to construct a rich representation
of the activity at both the motion and task levels in ways
that are both functional and apt for human-supervised ex-
ecution. Traditionally, the need for algorithms to build this
representation is avoided by either resorting to teleoperation
or by having expert programmers code the actions for a robot.
For instance, the operator of a remote robot (Figure 1 a),
which currently uses joint-by-joint teleoperation, would ben-
efit from planning assistance from the robot. This assistance
requires the robot to autonomously generate manipulation
plans by leveraging the current context and its existing skills.
In manufacturing, robots have been successfully deployed in
structured environments on tasks where all actions can be
coded by domain experts. This paradigm needs to change
in order to enable robots to execute manipulation tasks in
shared workspace with humans (Figure 1 b), where the
structure of the tasks is subject to uncertainty about the
human actions and the planner can no longer execute a pre-
designed strategy, but instead needs to handle predictions of
human actions while still accomplishing the task. In both
cases, it is beneficial to advance the state of the art with
systems that are capable of:

1) Learning constrained multi-step manipulation tasks
from observed demonstrations, as this would enable
the application of robotics by a larger set of users in
increasingly complex scenarios;

2) Implementing efficient workflows for human-in-the-
loop execution of the learned multi-step manipulation
tasks;

3) Using this knowledge to plan for a broader set of tasks
under uncertainty, so that the current context and on-
line predictions can be incorporated.

The technical approach is to develop models and algo-
rithms to learn tasks in the form of a knowledge base
(KB) that serves as information for the planner, and to
devise strategies for these planners to use this information
effectively in quasi-static settings. This representation is
learned from observing human demonstrations that are taken
as the initial information seed needed to reason about the
functionality of a manipulation task. This demonstration seed
is further exploited through computation to simulate self-
experience and improve upon the learned strategies.

I motivate and evaluate the work in the context of two
main applications that involve collaboration with humans:

Fig. 1: Domains of application: (a) Remote robot operation in
shared autonomy, (b) Shared workspace collaboration.

remote robot operation and shared workspace collaborative
robotics in manufacturing.

I focus my thesis work on the aforementioned three aspects
of the manipulation problem. Section II summarizes my work
to date on the first two aspects: (1) learning and planning,
and (2) supervised execution; whereas Section III introduces
the proposed work for (3) planning new strategies under
uncertainty.

II. WORK TO DATE

Figure 2 presents a systems-level diagram, where the
following components are highlighted:

1) Learning and Planning: Human demonstrations are
used to learn a representation of the activity, which is
encoded in the KB. I have proposed C-LEARN [1], a method
for learning geometric constraints from demonstrations for
multi-step functional manipulation tasks with multiple end
effectors in quasi-static settings. It contributes the ability to
(1) learn geometric constraints, including CAD constraints
(parallel, perpendicular, move in a line), (2) transfer a skill
learned with a source robot to a target robot without requiring
new demonstrations, and (3) use the planner and the multi-
step representation to formulate a series of motion sugges-
tions to be presented to an operator in shared autonomy.

Learning from demonstrations (LfD) has been shown to be
a successful method for non-experts to teach manipulation
tasks to robots. These methods typically build generative
models from demonstrations and then use regression to
reproduce skills. However, this approach has limitations
in capturing hard geometric constraints imposed by the
task. On the other hand, while sampling and optimization-
based motion planners exist that reason about geometric
constraints, these are typically carefully hand-crafted by an
expert. C-LEARN addresses this technical gap. The system
builds a knowledge base for reaching and grasping objects,



Fig. 2: High-level diagram of the system

which is then leveraged to learn multi-step tasks from a
single demonstration.

2) Human-in-the-loop execution: Motivated by the target
applications, the execution of the manipulation tasks is real-
ized in collaboration with humans, either in close physical
proximity or by remote operation though an user interface.
I leverage the shared autonomy framework designed at MIT
for the DARPA Robotics Challenge (DRC) – in particular, an
optimization-based motion planner [2] and a user interface
[3] – to implement a two-step workflow of planning and
execution, where motion plans are shown to the operator
and executed upon approval.

I have integrated the motion suggestions produced by
C-LEARN [1] with this execution workflow [2][3] to evalu-
ate the advantages of increased levels of autonomy for remote
robot control, and conducted a within-subjects user study
with an expert population to evaluate this method. Detailed
results will be presented in a journal paper currently in
preparation.

III. PROPOSED WORK

3) Planning new strategies under uncertainty: The
previous steps implement an end-to-end framework for learn-
ing and planning multi-step manipulation tasks. This step
involves generalizing C-LEARN to new tasks that are to be
executed in the presence of uncertainty. Uncertainty is due
to the lack of knowledge about the effects and feasibility
of new actions that were not present in the demonstrations,
and that are now required to handle variations of the task
configuration or of human motions in close proximity. While
methods to model and bound the uncertainty have been
explored, such as prediction of human motions [4][5][6], still
to be investigated is how to give feedback to the planner
and to the knowledge base learned from demonstrations, for
the case where a pre-designed manipulation strategy is not
feasible.

The next step involves creating a method to use the knowl-
edge base in generating new strategies that are variations
of the originally learned multi-step manipulation task. As
illustrated in Figure 2 , this third phase involves expand-
ing the KB and the planner to now support this source
of uncertainty, while still accomplishing the manipulation
task. From the point of view of the KB, this demands
a representation that learns the geometric constraints in a
flexible fashion that allows the planner to make use of them

for performing modifications to the plan according to the
new task configuration.

To summarize, C-LEARN achieved generalization across
different robots and different positions and orientations of
the objects involved, but it does not support generalization
across tasks. This means that it is only able to execute a
multi-step manipulation task using the same order of steps
that was learned. Creating new strategies for the same task or
generating new possible tasks with similar objects remains a
challenge in the field of artificial intelligence and robotics.

IV. SURVEY OF RELATED WORK

The following list is a representative sample of related
work on various topics. Learning and LfD: [7] [8] [9] [10]
[11] [12] [13] [14]; learning from one demonstration: [15]
[16] [17] [18]; planning with constraints and TAMP: [19]
[20] [21] [22] [23] [24] [25] [26]; multi-step constrained
manipulation: [27] [28] [29] [30] [31] [32] [33]; shared
autonomy systems: [34] [35] [36] [37] .
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