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Abstract

In this paper, we study how different meth-
ods for classifying correct answers to open
questions impact calibration scores in language
models. We compare seven different tech-
niques to perform this task. In this setting,
we find that even though answer classification
techniques have up to 21% differences between
each other, calibration scores are not affected
significantly.

We find these results show evidence of unrelia-
bility on commonly used metrics in this field.

1 Introduction

Evaluating question answering in natural language
is a challenging task because different answers can
be correct. In this paper we extend the paper (Cole
et al., 2023) by addressing a limitation in the re-
search evaluation methodology, which considers an
answer correct only if it exactly matches the gold
standard answer. Let us illustrate the limitation.
Suppose the model is prompted with the question

’What voltage is the common zinc-carbon or alka-
line AAA battery?’ and it generates the answer ’1.5
volts’ which is classified as erroneous because the
gold standard answers are ’1.5v’ and ’1,5’.

We employ seven distinct techniques to assess
correct answers, comparing them with each other
and with human annotation, providing a more com-
prehensive evaluation framework. This approach
allows for a nuanced understanding of model per-
formance, considering variations in acceptable re-
sponses and discovering its impact on results.

2 Previous work

It is usual to find a list of accepted correct an-
swers in question answering (QA) datasets, this
poses a challenge when evaluating outputs of gen-
erative models. This problem is acknowledged in
(Voorhees and Tice, 2000): “it is quite difficult to

determine automatically whether the difference be-
tween a new string and a judged string is significant
with respect to the correctness of the answer.”

Automatic evaluation of question answering fre-
quently use two metrics at the token level: Exact
Match (EM) and Token F1 (F1). (Bulian et al.,
2022) describe the ways they both fall short of
capturing the difference between significant and in-
significant span differences. Both techniques imper-
fectly capture the answer equality and can over or
underestimate the performance of models, this can
be seen in (Kocmi et al., 2021), (Gehrmann et al.,
2021), (Chen et al., 2019) and (Chen et al., 2020).
Bulian et al., notes that one obvious limitation of
token-level measures is their direct dependence on
the diversity of the reference answers collected for
the dataset (Chen et al., 2019). Bulian claims this
could be addressed by extending the annotations,
but this is both expensive and has diminishing re-
turns as the true collection of all correct answers
might be large.

Experiments comparing the accuracy of different
answer classification techniques can be found in
(Risch et al., 2021), using the SQuAD Dataset (Ra-
jpurkar et al., 2016), GermanQuAD (Möller et al.,
2021), and NQ-open (Kwiatkowski et al., 2019).
More information on evaluation, specially in open
questions can be found in (Honovich et al., 2021),
(Honovich et al., 2022), (Eyal et al., 2019), (Fabbri
et al., 2022), (Schuster et al., 2021).

3 Methodology

In all of our experiments, we worked with 4-bit-
quantized Falcon-7b (Almazrouei et al., 2023), an
open-source lightweight language model. We opted
to use this model due to its popularity and availabil-
ity. The full 40B parameter version of the Falcon
model topped the OpenLLM Leaderboard in Hug-
gingFace in June of 2023 (Delangue, 2023).



Question: What does a manometer measure?
Answer: Pressure.

Question: Who was Pope during World War Two?
Answer: Pius XII.

...

Question: Who is the director of Scarface?
Answer:

Figure 1: Section of a 4-Shot prompt used to perform
the experiments. The example QA pairs are selected
randomly so that each input to the model has a different
version of the prompt.

3.1 Confidence Scores
The confidence scores computed in our experi-
ments are the ones proposed in (Cole et al., 2023)
and were validated by one of the authors. Follow-
ing this, a brief description of each is provided.

• Likelihood: This is the product of the log prob-
abilities for the generated sequence.

• Sampling Repetition: The fraction of times
that the sampled outputs match the greedy output

• Sampling Diversity: This score is inversely
proportional to the number of distinct samples and
is estimated as 0 if all samples are different, com-
puted by Formula 1.

1− num_unique
num_samples

(1)

3.2 Evaluation Metrics
For evaluation metrics, we again replicated (Cole
et al., 2023) calculating Expected Calibration Error
(ECE), ROC-AUC and Cov@Acc. More details on
the section "Evaluation Setup" of the that paper.

3.3 Correct Answer Classification
We compare seven different techniques to classify
correct answers. We selected these options due to
their widespread adoption and its use in a similar
experiment in (Risch et al., 2021). For the human
annotation, an annotator was given the question,
possible answers and the model’s answer and was
asked to classify the answer as correct or incor-
rect. A second annotator also performed this task
on 10% of the dataset to calculate inter-annotator
agreement. The annotations had 97% of agreement,
resulting in a Cohen’s Kappa coefficient of 0.94.
In this metric’s terms, this is classified as almost
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Figure 2: Radar chart of all considered techniques to
classify correct answers. The accuracy value displayed
under each technique was computed comparing it to
human annotation. All evaluation metrics (ECE, ROC-
AUC and C@80) are displayed across all confidence
score methods (Likelihood, Diversity, Repetition). ECE
is better when smaller, ROC-AUC and C@80 are better
when higher. The vertices with the best performance
in each metric are highlighted with a circle. Almost all
metrics’ graphs resemble a regular octagon, meaning
their performance do not vary significantly across an-
swer classification technique.

perfect agreement. The automatic techniques are:
BLEU, ROUGE-L, METEOR, Cosine Similar-
ity, BertScore and BemScore (Bulian et al., 2022).
BemScore is a fine-tuned BERT model to classify
answer equivalence using the SQuAD Dataset (Ra-
jpurkar et al., 2016).

4 Datasets

Due to computing power limitations, in this work
we focused on a subset of the datasets used on
(Cole et al., 2023). We randomly sampled 1000
question-answer pairs from the TriviaQA dataset
(Joshi et al., 2017).

5 Experiment Setup

As the setup of (Cole et al., 2023) described, we
focus on few-shot in-context learning. Specifically,
the prompt is composed of four question and an-
swer pairs from the training set of TriviaQA. To
reduce variance across experiments, the example
QA pairs are selected randomly so that each input
to the model has a different version of the prompt.
In Figure 1, a partial example is shown.



Figure 3: Plot of calibration error by comparing bucketed accuracy to bucketed confidence scores across methods
and techniques, using TriviaQA as dataset. Each figure represents a technique analyzed to classify correct answers.
In every category the results of the Likelihood, Repetition and Diversity methods are tested, where following the
diagonal is perfect performance.

6 Results

In Figure 2 we can observe accuracies compared
to human performance for each technique. Exact-
match, the only one used in (Cole et al., 2023),
achieved an accuracy of 88.8%. BemScore, the top
scorer reached an accuracy of 94.7%. BertScore
performed the worst, at 79.1% of human accuracy.
The top and lowest scorer have a relative differ-
ence of 19.7%. The standard deviation between
accuracies across techniques is 0.054.

Calibration metrics results can be found in Fig-
ure 2. Almost all metrics’ graphs resemble a regu-
lar octagon, meaning their performance do not vary
significantly across techniques. On average, the
difference between the lowest score and the highest
score on each metric-method pair differ 9%. The
average standard deviation was 0.014.

In Figure 3, bucketed accuracy to bucketed con-
fidence can be observed. A perfect score is rep-
resented by the diagonal, where wrong answers
have low confidence scores and correct answers
have high confidence scores. We find some dif-
ferences between answer classification techniques:
Exact Match, METEOR, and BLEU lie mostly
below the diagonal, meaning that confidence scores
usually are higher than the proportion of correct
answers according to this method. This means con-
fidence scores usually overstate their value. On

the other hand, Cos Similarity and BertScore lie
mostly above the diagonal, understating their value.

7 Conclusions

We present an analysis of techniques of classifying
correct answers in a QA context, and their impact
on calibration scores. More specifically using the
TriviaQA dataset (Joshi et al., 2017).

Differences in accuracy related to human clas-
sification were found. However, we found consis-
tency across almost all tested calibration scores.
As discussed in Section 6, techniques mostly over-
or undervalue their calibration score, however our
metrics gave similar results for both. This could
mean that the metrics used don’t differentiate be-
tween both errors. These results shed light on the
unreliability of the accepted metrics in the area. If
an experiment was conducted using BertScore or
BemScore as the only answer classification tech-
nique, similar conclusions would be reached on
confidence metrics by the researchers while having
19.7% of relative error between them. We recom-
mend not to take task of classifying correct answers
lightly, and employ human annotation to assess the
errors of the automatic technique used.

We hope this study will contribute to further de-
velopment of better metrics and improve the evalu-
ation and usability of QA systems.



Limitations

Reproducing research conducted with large,
resource-intensive language models using limited
computing power presents a significant challenge.
Our available hardware constrained the scale and
complexity of our experiments. This constraint af-
fected the size of the model, the training data, and
the efficiency of training times. While we aimed
for faithful replication, these resource limitations
influenced the extent to which we could emulate
the conditions of (Cole et al., 2023).

Additionally, the closed-source nature of the
original language model posed inherent limitations.
This lack of transparency hindered our ability to
fully understand the architecture of the model orig-
inally used, potentially restricting our capacity to
address certain research aspects comprehensively.

We ran our experiments on only one dataset, a
more in-depth study could be performed when an-
alyzing different contexts and answer types. All
questions were non-ambiguous, one of the main
focuses of (Cole et al., 2023) was the impact of
ambiguity on calibration. Adding this layer to our
study could improve our understanding on the sub-
ject.

The development of a metric that would be able
to mitigate the challenges discussed in this paper
was not discussed and is left as future work.
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