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Abstract
Social Media platforms, vital for debate and
communication, also grapple with misinforma-
tion and hateful comments. This work exam-
ines the detection of hate speech in Portuguese,
contemplating its unique linguistic and cultural
nuances. Leveraging Transformer-based mod-
els and different training and activation strate-
gies, eight models with variations in architec-
ture, size, and pre-training corpora are evalu-
ated. Our findings show that, even though large
generative models with enhanced prompts ex-
hibited promising results, tuned small language
models are still superior in addressing this task.

1 Introduction

Social Media platforms have become essential for
debate and enabled unprecedented communica-
tion. However, they have also introduced signifi-
cant challenges, such as spreading misinformation
and the proliferation of hateful comments (Pelle
et al., 2018; Aluru et al., 2020). In the interim,
the Transformer (Vaswani et al., 2017) architec-
ture has emerged, demonstrating state-of-the-art
results in various scenarios, including classification
problems (Fortuna and Nunes, 2018).

However, detecting hate speech remains an open
issue, notably lacking resources in languages other
than English, such as Portuguese (Jahan and Ous-
salah, 2023). The inherent characteristics of the
language play a crucial role in this context, as the
use of figures of speech and cultural nuances can
significantly complicate this problem (Jang et al.,
2023). On the other hand, an equally important con-
sideration is the sensitivity of the domain, where
both types of misclassification – falsely identifying
content as problematic and failing to identify prob-
lematic content – are critical, as they could lead to
censorship or a failure to protect vulnerable groups.

In this context, we approach the problem as:
Given a social media post P written in Por-
tuguese, pre-process it returning X , and classify

it as belonging to one of the three classes in Y =
{“hate speech”, “offensive” or “neutral”}, where
offensive comments encompass rude or insulting
communication, and hate speech involves expres-
sions of hate towards an individual or a group,
rooted on characteristics like ethnicity and gen-
der (Pelle et al., 2018; Vargas et al., 2021).

Our work aims to investigate the performance of
the prominent Transformer architecture to tackle
this critical task, thereby contributing to safeguard-
ing a resilient and pluralistic environment on social
media. We explore eight models varying in archi-
tecture, size, and the corpora on which they were
pre-trained. Specifically, we consider three groups
of models: (i) models based on the BERT (Devlin
et al., 2019) architecture; (ii) Portuguese-language
models based on the LLaMA (Touvron et al.,
2023a,b) architecture; and (iii) general-purpose
Large Language Models (LLMs). The first group
consists of four models, peculiarly three alterna-
tives specialized for Portuguese — including a
model pre-trained on a corpus of tweets — and one
multilingual alternative also pre-trained on tweets.
The second group includes two 7-billion parameter
models pre-trained on structured texts. Lastly, the
third group involves one model from the popular
GPT (Brown et al., 2020) family and the recently re-
leased Gemini-pro (Google, 2023), both not mainly
pre-trained in Portuguese. This way, we contribute
to a diverse study of models to address the challeng-
ing domain of detecting Portuguese hate speech on
social media platforms.

2 Related Work

Identifying hate speech on social media has be-
come a significant topic in recent years. Yet, the
number of studies focusing on the peculiarities of
the Portuguese language remains limited compared
to English (Jahan and Oussalah, 2023). Some ap-
proaches address models based on BERT and its



state-of-the-art capabilities for classification tasks.
In this context, (da Silva and Rosa, 2023) evaluated
several distinct models, finding superior results in
BERT-based models, such as BERTimbau (Souza
et al., 2020), a finding reinforced by (Santos et al.,
2022). (Jahan and Oussalah, 2023) present results
indicating that language-specific models achieve
better outcomes than multilingual alternatives.

Furthermore, LLMs and their remarkable abili-
ties, are also being investigated for this task. (Assis
et al., 2024) compare the GPT-3.5 and the Brazil-
ian chatbot Maritalk1 with pt-BR BERT-based op-
tions, concluding that the latter group achieve bet-
ter results. (Oliveira et al., 2024) contrast the same
pair of LLMs, with a prompt engineering approach,
and underscore Maritalk’s potential despite GPT’s
higher performance. Additionally, (Chiu et al.,
2022) assessed ChatGPT for detecting hate speech
content, and (Nguyen et al., 2023) evaluated tuned
LLaMA-2 models for detecting sexual, predatory,
and abusive texts.

None of the aforementioned works conducted
a study that comparatively includes the same vast
amount of Portuguese-language models tuned as
a ternary classification problem. Also, decoder
models as the foundation for classifiers and a more
recent LLM in an in-context learning (Brown et al.,
2020) approach have not been evaluated either.

3 Method

This section details the selected models, training
methods for classifier models, and inference strate-
gies for generative models.

3.1 Encoder-based Classifiers Training

We select encoder-based models as follows.
First, we have BERT-based models pre-trained
with Brazilian Portuguese corpora: BERTim-
bau (Souza et al., 2020) in its large version, and
AlBERTina (Rodrigues et al., 2023) in its 100m ver-
sion, both pre-trained with more well-formed lan-
guage; also BERTweet.BR (Carneiro, 2023), that is
pre-trained with a corpus of tweets. Bernice (DeLu-
cia et al., 2022) is also pre-trained on a Twitter data
corpus, but it is multilingual. The most common
fine-tuning strategy was adopted, stacking a classi-
fier layer onto the language model and adjusting the
model weights according to the training examples.

1https://www.maritaca.ai/

3.2 Decoder-based Classifiers Training

Regarding the decoder-based classifier models,
Sabiá-7b-1 (Pires et al., 2023), which is built
on the LLaMA-1 architecture, and Gervásio-7b-
PTBR (Santos et al., 2024), built on the LLaMA-2
architecture, were selected. Both models were pre-
trained on well-structured Portuguese text corpora.
We used a tuning approach similar to the one usu-
ally adopted in encoder-based classifiers: stacking
a classifier layer onto the language model. This
choice stems from the decoder output of LLMs
holding semantic meaning from the input, serving
as text representations for classification tasks with
prominent results (Li et al., 2023).

3.3 Generative LLMs Activation

The popular GPT-3.5-turbo (Ouyang et al., 2022)
and the Gemini-pro 1.0 (Google, 2023), recog-
nized for their remarkable performance in recent
benchmarks, were chosen as generative large lan-
guage models. Due to the constraints in adjusting
the weights of these large and closed models, our
strategy leverages their in-context learning capa-
bilities by activating them with prompts (Brown
et al., 2020). The responses’ effectiveness may be
expressively influenced by how the prompts are
crafted (White et al., 2023). This way, a well-
known method involves embedding examples di-
rectly within the prompts. Our approach encom-
passes fixing the prompt instruction and exploring
the choice of demonstrations and their impact on
the models’ performance. The instruction is as fol-
lows: CLASSIFIQUE O TEXTO DE REDE SOCIAL

COMO “DISCURSO DE ODIO” OU “OFENSIVO” OU

“NEUTRO”.\N TEXTO: target \N CLASSE:2.
We rely on four ways to assemble prompts using

examples: (a.) zero-shot, with no examples; (b.)
one-shot, which includes a single example from
one class; (c.) one-class-shot, which incorporates
one example per class; and (d.) few-shot, which
uses more than one example per class, precisely
two in this study. For selecting examples, we in-
troduced three strategies: (e.) random choice, (f.)
based on semantic similarity, and (g.) based on
the number of tokens. Strategies (f.) and (g.)
start by sorting the set of demonstration candidates
into clusters per class. They then pick examples
close and far from the test instances’ embedding

2In English that would be: Classify the social network text
as “hate speech”, “offensive”, or “neutral”. \n Text: target
\n Class:

https://www.maritaca.ai/


HateBR OLID-BR ToLD-BR
Strategy prec. rec. acc. f1 f1hs Strategy prec. rec. acc. f1 f1hs Strategy prec. rec. acc. f1 f1hs

BERTimbau Fine
Tuning 0.803 0.822 0.862 0.811 0.667 Fine

Tuning 0.637 0.664 0.663 0.623 0.596 Fine
Tuning 0.529 0.598 0.599 0.474 0.065

AlBERTina Fine
Tuning 0.793 0.707 0.800 0.734 0.569 Fine

Tuning 0.599 0.589 0.613 0.563 0.544 Fine
Tuning 0.417 0.453 0.538 0.399 0.059

BERTweet.BR Fine
Tuning 0.768 0.793 0.846 0.779 0.583 Fine

Tuning 0.625 0.665 0.672 0.635 0.606 Fine
Tuning 0.543 0.671 0.708 0.548 0.178

Bernice Fine
Tuning 0.830 0.788 0.863 0.805 0.656 Fine

Tuning 0.640 0.660 0.666 0.620 0.579 Fine
Tuning 0.534 0.640 0.704 0.536 0.141

Sabiá-7b-1 Fine
Tuning 0.465 0.379 0.526 0.322 0.129 Fine

Tuning 0.422 0.434 0.532 0.437 0.412 Fine
Tuning 0.383 0.381 0.531 0.355 0.000

Gervásio-7b Fine
Tuning 0.595 0.619 0.672 0.595 0.345 Fine

Tuning 0.464 0.480 0.495 0.457 0.475 Fine
Tuning 0.361 0.388 0.446 0.336 0.042

GPT-3.5-turbo size-based
one-class-shot 0.654 0.696 0.697 0.621 0.408 sim-based

one-class-shot 0.526 0.567 0.553 0.528 0.564 sim-based
few-shot 0.486 0.543 0.621 0.447 0.081

Gemini-pro 1.0 size-based
one shot 0.602* 0.609* 0.601* 0.562* 0.407* sim-based

one shot 0.592* 0.476* 0.607* 0.460* 0.554* rand-based
few shot 0.475* 0.526* 0.609* 0.455* 0.100*

Table 1: Macro results of precision, recall, accuracy, f1-score, and also the hate speech class f1-score for each model
in its best configuration. Gemini* results may slightly fluctuate due to the rate of responses blocked by Google API
filters. This rate was 0.15%, 0.79% and 0.12% for each dataset, respectively. Best results in bold.

representation or mode size. This way, we aim to
evaluate how such extremes affect inference.

4 Experiments and Results

This section details the implementation process and
presents the results obtained.

4.1 Experimental Setup
Models Setup All the fine-tuned models utilized
an early stopping criterion for epoch selection and
a batch size of 16. The encoder-based models had
a learning rate of 2e − 5. The 7B models were
fine-tuned using LoRA (Hu et al., 2022) strategy,
with r = 16, lora_alpha = 32, and a learning rate
of 1e−4. Finally, the prompt-activated models had
temperature = 0.1 and the max_token = 20.

Datasets Three datasets with hate content were
used for evaluation. HateBR (Vargas et al., 2022),
which includes comments gathered from the In-
stagram accounts of Brazilian politicians; OLID-
BR (Trajano et al., 2023), featuring tweets and
YouTube comments in Portuguese; and ToLD-
BR (Leite et al., 2020), which consists of a col-
lection of Brazilian tweets. All datasets were di-
vided into 60% for training, 20% for validation, and
20% for testing. Dataset preprocessing involves
anonymizing users with the @USER token, replac-
ing URLs with HTTPURL token, and converting
emojis into text.

4.2 Results
To address space limitations, we only included the
best results for each model in Table 1, based on
the F1-score for hate speech, which we conjec-
ture is the most critical class. Encoder-based mod-
els, especially the one pre-trained on social media
and Portuguese (i.e., BERTweet.BR), were the top

performers in most datasets, suggesting that pre-
training corpus is a crucial aspect.

Despite having more parameters, decoder-based
7-billion models were less successful than encoder-
based models. This hints at a possible gap in
their training on hateful content. Furthermore, the
demonstration selection strategy for large models
activated by prompts demonstrates potential. The
GPT and Gemini models achieved most of their
best results when selections were based on size or
semantic similarity. They even outperformed mod-
els specifically adapted for Portuguese and further
fine-tuned, Sabiá and Gervásio.

Overall, our findings emphasize the superiority
of encoder-based models for this task. While gener-
ative models have shown potential, especially those
trained on vast and diverse datasets, the targeted na-
ture of encoder language models pre-trained on spe-
cific domains (e.g., social media and Portuguese)
and adjusted explicitly for the task appears to be a
critical feature for identifying hate speech.

5 Conclusions

We examined eight models with varying features
derived from the Transformer architecture for hate
speech detection task. Our findings indicate that
despite the advanced abilities of generative LLMs,
small models still play a crucial role in prevent-
ing the perpetuation of social issues in NLP tools.
Additionally, aspects related to pre-training (e.g.,
the ethical filters, the nature and the language of
the training corpora) may be correlated with better
outcomes, more than the size of the models in this
case. Our results also illustrate AI limitations for
this critical domain. Therefore, we emphasize that
these models should serve as aids in moderation,
but not as complete substitutes for it.



Limitations

This study faces a limitation regarding the divi-
sion of its training, validation and testing sets, as
it employs only a single split. This constraint pri-
marily stems from the significant costs of utilizing
the GPT API, Gemini API, and computational re-
sources on the Google Cloud environment. Further-
more, this limitation also restricted the variation of
hyperparameters for our models, such as adjusting
the number of epochs or modifying the learning
parameters. While these factors may affect the
interpretation of the models’ behavior in broader
scenarios, those decisions enabled the analysis and
comparison of various approaches across models,
each with unique characteristics.
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