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Abstract

In this paper, we propose the first multilingual
study on definition modeling focusing on lan-
guages of Latin America. We collect monolin-
gual dictionary data for Spanish and Portuguese
and perform an in-depth empirical study to
test the performance of large language mod-
els in the definition modeling of monosemic
words. A comprehensive human evaluation of
the LLM-generated definitions validates our
choice of COMET as an automatic evaluation
metric, highlighting the zero and few-shot capa-
bilities of these models in this new task and also
showing their shortcomings and the limitations
of COMET for automatic evaluation.

1 Introduction

Large Language Models (LLMs) have recently
caused a significant shift in our field by achieving
excellent performance on a wide variety of down-
stream tasks without fine-tuning and instead rely-
ing on zero or few-shot approaches (Brown et al.,
2020; Kojima et al., 2022). To better understand
how these models capture linguistic information,
several evaluation and probing tasks have been de-
veloped (Blevins et al., 2023; Starace et al., 2023).

Definition modeling is the task of estimating the
probability of a textual definition given a word. It
has been shown to give a transparent view of how
well models capture syntax and semantics. First
proposed by Noraset et al. (2017), it can be framed
as a conditional generation, in which the definition
or phrase is generated given a conditioning variable
such as a word’s associated word embedding or
other representations of context.

Existing approaches for this task train a model on
a corpus of word-definition pairs that is later tested
on how well they generate definitions for words not
seen during training. Current approaches (Noraset
et al., 2017; Gadetsky et al., 2018; Ni and Wang,
2017; Ishiwatari et al., 2019; Reid et al., 2020) are

mainly encoder-decoder based, in which one en-
codes a contextual representation for a word/phrase
using a variety of features such as context or char-
acter composition, and then uses the contextual
representation(s) to generate the definition.

Though several models and datasets have been
proposed, previous work has predominantly fo-
cused on English. We find just a handful of pa-
pers that work on definitions for other languages,
namely VCDM from Reid et al. (2020) for French
and the work of Kong et al. (2020) for Chinese. We
also find that dictionary data for French and Italian
have been released in the past few years but that
there are no approaches that leverage them so far
(Hathout et al., 2014; Hathout and Sajous, 2016;
Sajous et al., 2020; Calderone et al., 2017).

Although these first steps towards including
other languages for this task are pivotal, explor-
ing languages from relevant but usually neglected
parts of the world, such as Latin America, is crit-
ical. In light of this issue, we study the multilin-
gual abilities of instruction-tuned LLMs in two
of the main languages of Latin America, Spanish
and Portuguese. We evaluate how well LLMs can
provide definitions for words in these languages, ef-
fectively using the task to probe their multilingual
abilities. Also, we present a thorough empirical
study based on automatic metrics, including BLEU,
BERTScore, and COMET, as well as a comprehen-
sive human evaluation.

Our results show that LLM prompting tech-
niques, either in the zero-shot or few-shot scenarios,
lead to worse results when compared to English.
Furthermore, we also observe that the output lan-
guage can be challenging to control and our human
evaluation showed that many of the definitions mis-
takenly generated in English were correct, particu-
larly in the case of Portuguese. Finally, techniques
such as in-context learning do not lead to signifi-
cantly better quality output.



2 Proposed Approach

Data For our study, we collect data for the two
main languages spoken in Latin America, Spanish
(485 M native speakers) and Portuguese (236 M
native speakers). For each language, we choose
a well-known and readily available dictionary to
serve as a source: the Dictionary of the Span-
ish language for Spanish (dle.rae.es), and Dicio
(dicio.com.br) for Portuguese.

During the data collection phase, we observed
that these dictionaries only sometimes contain ex-
amples of word usage. This point presented an
issue as previous research has shown that use case
examples are critical in allowing models to disam-
biguate a specific meaning for a given term in the
case of polysemy. Although it has been attempted
to solve this task without the aid of context (Noraset
et al., 2017), we believe this setting is of limited
interest and therefore collect data for the terms that
exhibit only a single meaning, thus experimenting
in a monosemic scenario. We leave collecting this
word usage information for future work.

During this phase, we also noted that we often
collected multiple entries for the same term. A vi-
sual inspection of the data showed that inflections
of verbs (e.g., tenses) and adjectives (e.g., gender)
were sometimes present in the source dictionaries,
particularly in DICIO. As this may lead to data
leakage problems for our experiments, we utilized
spacy (spacy.io) to identify word lemmas, keep-
ing the example where the original term matches
the lemmatized word. The resulting datasets were
split into the 80/10/10 ratio. Table 1 shows the
exact details of our split sizes, compared to the En-
glish dataset built from Oxford Dictionaries (Gadet-
sky et al., 2018) (OXFORD), to which we apply the
same preprocessing described above.

Dataset Train Valid Test

OXFORD (en) 15,770 6,884 6,834

DRAE (es) 32,834 4,104 4,105
DICIO (pt) 118,591 14,824 14,824

Table 1: Details of the size of each split for our collected
and filtered data, compared against OXFORD.

Models We consider two popular white-box
LLMs, Llama2 (Touvron et al., 2023) and Mistral
(Jiang et al., 2023). For the former, we utilize the
13B-parameter Llama-2-13b-chat-hf (LLAMA-2),
while for the latter, we use the 7B-parameter model

Mistral-7B-Instruct-v0.1 (MISTRAL). We quantize
these models to 4-bits using QLoRA (Dettmers
et al., 2023) to fit into our GPU memory.

We test two settings: (1) zero-shot, where the
model is directly asked to generate the word’s def-
inition, and (2) few-shot, where we incorporate
term-definition examples in the prompt before re-
questing the definition for the target term. These
shots are randomly sampled from the training data
and kept constant across examples. We keep the
input to the model as simple as possible, always
using the prompt “Define the {language} word

‘{term}’. Use only {language} to reply.”, where
{language} and {term} are variables denoting the
target language and the term to define. More infor-
mation regarding the prompts can be found on the
supplementary material A.2 and A.3.

To increase the robustness of our reported results,
we repeated each experiment 3 times with different
random seeds. In the case of the few-shot scenario,
we also sampled a different set of (term, definition)
tuples from the training split to feed as context.

Evaluation We report BLEU, relying on the
sacrebleu (github.com/mjpost/sacrebleu) im-
plementation (Post, 2018). Since previous work
(Reid et al., 2020; Huang et al., 2021; Jhirad et al.,
2023) has shown that n-gram overlap metrics do
not capture nuance in the definitions generated, we
also report BERTScore (Zhang et al., 2019) and
COMET (Rei et al., 2020), using the wmt22-comet-
da model, which has multilingual support.

To evaluate the ability of the LLMs to gener-
ate definitions in the target language, we rely on a
fasttext-based language classification model (Grave
et al., 2018). We compare the target language with
the highest probability language predicted, report-
ing the percentage of examples where the predic-
tion matches the target, which we consider to mea-
sure the degree of instruction compliance.

Finally, we also performed a human evaluation
on a subset of the definitions generated. We re-
cruited one volunteer native speaker of Brazilian
Portuguese and Spanish and asked them to evalu-
ate a set of 100 generated definitions by our best
two models. We choose one random seed and pick
the 50 best/worst generations based on COMET.
For evaluation, we designed an evaluation scheme
based on a Likert scale with five values, which we
crafted based on a detailed examination of the out-
puts of the models. For more details, please refer
to Table 4 in the supplementary material.

dle.rae.es
dicio.com.br
spacy.io
github.com/mjpost/sacrebleu


Dataset Model S BL BS CMT Cmp.

OXFORD
(en)

LLAMA-2 0 0.949 0.826 0.553 1.000
5 3.906 0.851 0.537 1.000

MISTRAL
0 1.183 0.837 0.557 0.999
5 1.821 0.842 0.529 1.000

DRAE
(es)

LLAMA-2 0 0.271 0.617 0.504 0.996
5 1.360 0.675 0.470 0.877

MISTRAL
0 0.324 0.650 0.458 0.703
5 0.559 0.663 0.440 0.852

DICIO
(pt)

LLAMA-2 0 0.143 0.682 0.513 0.969
5 1.828 0.683 0.462 0.883

MISTRAL
0 0.146 0.689 0.475 0.630
5 4.030 0.709 0.501 0.926

Table 2: Results of our experiments, where S indicates
the number of shots, Cmp. is short for compliance, and
BL, BS and CMT are short for BLEU, BERTScore and
COMET, respectively. Numbers in bold indicate best
results for each language-model combination. Under-
lined results indicate differences against zero-shot are
significant at α = 0.05.

3 Results

Table 2 summarizes the results of our experiments
with LLMs. Besides our two target languages, we
also include English results as our baseline.

Overall, we observe that both models struggled
to deliver a comparable performance in our target
languages. However, MISTRAL performed better
in Portuguese. One important issue we noticed here
is that our LLMs often gave outputs in English.

Furthermore, although our results initially sug-
gested that in-context learning leads to consistent
improvements over zero-shot settings, these were
not always statistically significant across metrics
and languages. We did not perform prompt engi-
neering for the in-context learning, so our results
could be considered lower-bound. However, within
this task, we believe that while giving examples
might help the model learn the dictionary style of
giving definitions, if the model does not know the
word, it will not be able to give satisfactory results
no matter how many examples we provide.

Table 3 summarizes the results of our human
evaluation efforts. First, we observe that the Likert
score on the Best sets is higher than on the Worst
sets, which supports our choice of COMET as a
metric for our task. However, we also observe that
the correlation in the worst sets is overall smaller.
This result is likely because while COMET varied
between values of 0.2 to 0.4, these definitions were
mostly tagged as “Very poor” across all languages.

Furthermore, we observe that the correlation in
the Best set in the zero-shot scenario is almost

Model Likert COMET Correlation

DRAE (es)

LLAMA-2 4.680 / 1.100 0.700 / 0.317 0.030 / 0.033
+ 5 shots 4.900 / 1.100 0.751 / 0.235 0.056 / -0.100

MISTRAL 4.600 / 1.080 0.727 / 0.258 0.124 / 0.218
+ 5 shots 4.440 / 1.140 0.710 / 0.236 0.270 / 0.237

DICIO (pt)

LLAMA-2 3.860 / 1.240 0.639 / 0.385 -0.224 / 0.118
+ 5 shots 4.000 / 1.460 0.623 / 0.339 0.402 / 0.102

MISTRAL 3.260 / 1.140 0.577 / 0.320 0.089 / 0.181
+ 5 shots 1.780 / 1.180 0.530 / 0.306 0.186 / -0.053

Table 3: Results of the human evaluation in terms of
average Likert scores (best 50 / worst 50), compared
to COMET. We also report the Pearson correlation be-
tween these two values among the given samples.

0 for LLAMA-2 in Spanish and negative for Por-
tuguese. In this scenario, we noticed that models
often generate very long definitions, which could
have impacted COMET’s performance. Further-
more, while LLAMA-2 generations were more pre-
cise and correct, MISTRAL generations were rather
“Very good”, with rich details, or “Very Poor”, with
wrong information; however, COMET could not
detect such differences. These findings agree with
previous observations by Jhirad et al. (2023) and
provide additional evidence to show that the perfor-
mance of COMET decreases substantially with the
length of the inputs.

Our human evaluation also revealed a signifi-
cant challenge: many of the definitions mistakenly
generated in English were correct, particularly in
the case of Portuguese. These findings underscore
the models’ difficulty in generating definitions out-
side English, indicating a clear need for improved
mechanisms. Based on these insights, we propose
a potentially fruitful avenue for further research:
studying the task from the perspective of chain-of-
thought reasoning (Wei et al., 2022; Kojima et al.,
2022), for instance, by asking the models to solve
the task using a define-then-translate approach.

4 Conclusions

In this paper, we presented a study on definition
modeling for Spanish and Portuguese using LLMs.
Our results indicate that models may have the cor-
rect information regarding a definition, but struggle
to generate them in the target language, lacking
performance when compared to English. Finally,
techniques such as in-context learning did not lead
to significantly better quality output.



Limitations

Our work has a few notable limitations. First, the
sources for our dataset forbid the distribution of
the data, and therefore, we are not allowed to share
our created datasets. Second, while we tackled
three different languages, we do not have evidence
that our results will generalize to other languages,
especially those belonging to different linguistic
branches. Third, we recognize that despite their
remarkable performance, LLMs may be challeng-
ing for many researchers to access, as white-box
models require powerful computing resources to
run them locally, and black-box models are be-
hind a paywall. Finally, while we demonstrated
how LLMs can generate definitions for monosemic
words, we have yet to tackle polysemy, an arguably
more challenging scenario.

Ethics Statement

Our main objective is to use the definition modeling
task to evaluate the multilingual abilities of LLMs,
introducing dictionary datasets for two of Latin
America’s main languages. One potential use case
is to have a model generate fake definitions that
may mislead users who interact with an LLM when
deployed. Through the insights of our work, we
hope to minimize such risks.
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A Detailed Results

A.1 Human Evaluation Details

In Table 4, we show the criteria for each of the
Likert categories used for the human evaluation of
the generated definitions.

A.2 System Prompts

Regarding the system prompt, for LLAMA-2, we
follow the approach by the original paper but re-
place the original one 1 with the phrase “You are a
helpful assistant. Always answer as helpfully and
concisely as possible.”, to help reduce false refusal
rates, i.e., when the model incorrectly refuses to
answer a question that it should, for example, due
to overly broad instructions to be cautious in how it
provides responses. In our case, we observed that
this often happened whenever we asked the model
to define words that could be offensive in certain
contexts. In the case of MISTRAL, we simply uti-
lize the original system prompt setting.

A.3 Few-shot setting

For the few-shot experiments, our prompt consisted
of providing the zero-shot prompt described in Sec-
tion 2 for a five different sampled word from the
training set, each followed by its definition. An
example can be seen below:

[’role’: ’user’, ’content’: "Define the Por-
tuguese word ’aldrave’. Use only Portuguese to
reply.", ’role’: ’assistant’, ’content’: ’Aldrave vem
do verbo aldravar. O mesmo que: tranque, afer-
rolhe.’, ’role’: ’user’, ’content’: "Define the Por-
tuguese word ’honorificai’. Use only Portuguese to
reply.", ’role’: ’assistant’, ’content’: ’Honorificai
vem do verbo honorificar.’, ’role’: ’user’, ’content’:
"Define the Portuguese word ’bicarboneto’. Use
only Portuguese to reply.", ’role’: ’assistant’, ’con-
tent’: ’[Química] Combinação em que o carbono
é em quantidade dupla da que há no carboneto;
bicarbureto.’, ’role’: ’user’, ’content’: "Define the
Portuguese word ’dicotomicamente’. Use only Por-
tuguese to reply.", ’role’: ’assistant’, ’content’:

’Dicotomicamente é uma palavra derivada de di-
cotômico.’, ’role’: ’user’, ’content’: "Define the
Portuguese word ’desalbardar’. Use only Por-
tuguese to reply.", ’role’: ’assistant’, ’content’:

1https://github.com/huggingface/transformers/
blob/ee2a3400f2a7038a23b83a39c5d0e24f7f699561/
src/transformers/models/llama/tokenization_llama.
py#L57, https://github.com/facebookresearch/
llama/blob/main/UPDATES.md

’Tirar a albarda a.’, ’role’: ’user’, ’content’: "De-
fine the Portuguese word ’abacatal’. Use only Por-
tuguese to reply."]

This prompt is then converted to the appropriate
input format for each model.

A.4 Statistical Significance Details
Table 5 below provides the details of the p-values
for the experiments with LLMs.

A.5 Role of Quantization
Quantization has been shown to be detrimental to
performance in certain scenarios, we also evaluate
the influence of this technique on our task. For this
study, we limit ourselves to the zero-shot scenario
and to DRAE and DICIO, which we believe should
serve as a reasonable estimate for the overall perfor-
mance gap due to the effect of quantization. Again,
we run each experiments three times with different
random seeds, and report average results, which
we summarize in Table 6.

B Hardware

All of our experiments were performed on a large
cluster, where we usually rely on a node with 4
NVIDIA V100 GPUs, or an instance with a single
NVIDIA A100 GPU. We spent a total of approxi-
mately 2,000 USD in our experimental setup, most
of which is due to improving the robustness with
of our study by repeating LLM experiments with
multiple seeds.

https://github.com/huggingface/transformers/blob/ee2a3400f2a7038a23b83a39c5d0e24f7f699561/src/transformers/models/llama/tokenization_llama.py#L57
https://github.com/huggingface/transformers/blob/ee2a3400f2a7038a23b83a39c5d0e24f7f699561/src/transformers/models/llama/tokenization_llama.py#L57
https://github.com/huggingface/transformers/blob/ee2a3400f2a7038a23b83a39c5d0e24f7f699561/src/transformers/models/llama/tokenization_llama.py#L57
https://github.com/huggingface/transformers/blob/ee2a3400f2a7038a23b83a39c5d0e24f7f699561/src/transformers/models/llama/tokenization_llama.py#L57
https://github.com/facebookresearch/llama/blob/main/UPDATES.md
https://github.com/facebookresearch/llama/blob/main/UPDATES.md


Category Details Example

Very poor A completely wrong
definition, one that
contains only the
word, or its English
translation.

Waterspout (Tromba d’agua)
Definition: Phenomenon defined by the formation of a mass of vapors over rivers, lakes, seas, generally in the shape of a
funnel, a cone with the base facing the clouds.
Generated: Sure! “Waterspout” is a term used to designate a type of flooding caused by a river flood or storm surge, which
can flood coastal or plain areas.

Poor A definition of a re-
lated word.

To sharpen (Nitidificar)
Definition: To make something clear, perceptible, sharp; To clear a substance; the concept became clear with your
explanation.
Generated: To sharpen is a verb that means “to enhance” or “to beautify.” It is used to describe the action of improving or
enriching something, it can be applied to objects, situations or people. Example: “The sun on the beach sharpened the sea
with its rays”.

Acceptable It gives an idea of
the broad sense of
the word

Supralegal (Supralegal)
Definition: [Legal] Above the law; that, hierarchically, occupies a superior position in relation to legislation.
Generated: Of course! The term “supralegal” in Portuguese means “beyond the law” or “outside the law”. It is used to
describe acts or situations that are illegal or that are not subject to any type of legal regulation.

Good Gives the correct
word definition, but
it has some impreci-
sion (e.g. wrong use
cases)

To oversize (Superdimensionar)
Definition: Grant large dimensions to; give an exaggerated size, an exaggerated scope to something; to exaggerate the
achievements of a government.
Generated: Of course! The Portuguese “oversize” is a term that is not very common, but can be used to describe an
action or process that increases or exaggerates a characteristic or property of something. Most of the time, it is used to
criticize situations in which someone is exaggerating or increasing something disproportionately. For example, if someone
is exaggerating their ability in a certain subject, it could be said that they are “oversizing” their ability.

Very good Correct definition
with no imprecision.

To sanitize (Sanitizar)
Definition: To comply with hygiene requirements or recommendations; to clean: To sanitize an environment.
Generation: Of course! The Portuguese “sanitize” refers to eliminating or removing anything that could be considered
unclean or dangerous to health. For example, it may refer to disinfecting surfaces or objects, or eliminating bacteria or
viruses from an environment. In short, “sanitize” means to purify or disinfect.

Table 4: Explanation of our human evaluation system for generated definitions. Examples are taken from DICIO
and manually translated to English by the annotator.

Dataset Model BL BS CMT Cmp.

OXFORD
(en)

LLAMA-2 0.000 0.000 0.037 -
MISTRAL 0.008 0.002 0.002 -

DRAE
(es)

LLAMA-2 0.011 0.000 0.001 0.011
MISTRAL 0.096 0.037 0.003 0.021

DICIO
(pt)

LLAMA-2 0.185 0.602 0.597 0.295
MISTRAL 0.027 0.012 0.035 0.000

Table 5: P-values of t-test comparing the model’s per-
formance in zero and five shot scenarios.

Dataset Model Type BL CMT

DRAE
(es)

LLAMA-2 4bit 0.271 0.504
full 0.295 0.510

MISTRAL
4bit 0.324 0.458
full 0.333 0.469

DICIO
(pt)

LLAMA-2 4bit 0.143 0.513
full 0.120 0.515

MISTRAL
4bit 0.146 0.475
full 0.138 0.489

Table 6: Results of our study on the impact of low preci-
sion (4 bit). In the table, Cmp. is short for compliance,
the % of cases where the answer is in the correct lan-
guage, while BL, BS and CMT are short for BLEU,
BERTScore and COMET, respectively.
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