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1 Introduction

The objective of this work is to develop a reli-
able and complete Generative Question Answering
(QA) System in Spanish, for the biomedical do-
main. The need for such kind of system for general
users to clarify complex biomedical questions is
noticeable, given the existing misinformation and
the lack of reliable tools that join multiple sources
to form a complete answer about health-related top-
ics. Given the importance of these for society as a
whole, and the lack of relevant resources in Span-
ish, it was considered of general interest to develop
a system that could bring together the knowledge
located in different sources and make it available
to the Spanish-speaking community. Moreover,
putting a focus on accessibility, the system should
also be fully operated through voice.

2 Background

Up to recently, QA systems were usually built with
two pieces (see (Karpukhin et al., 2020)): a) an
information retrieval system, based on BM25, TF-
IDF, or Sentence Transformers, and b) an extractive
QA model, which selects parts of the texts obtained
by the piece above and returns them as an answer.

Currently, the existing NLP technologies and re-
sources for English allows creating more advanced
solutions, such as Wikipedia Assistant (Blagoje-
vic, 2022), which rely on Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020) and Long Form
Question Answering (LFQA) (Blagojevic, 2022)
models . This, was not previously possible for
Spanish, due to the relatively small number of pub-
licly available resources for this language, and in
particular for the task of training passage retrieval
and generative QA models, in spite of being one of
the most spoken languages in the world.

The main contribution of this work is BioMedIA,
a LFQA system for the biomedical domain in the
Spanish language. This is, to the best of our knowl-

edge, the first time Dense Passage Retrieval (DPR)
models have been trained in Spanish with large
datasets, and the first time a generative QA model
in Spanish has been released. All the codebase is
published as open-source, and we also contribute
to the NLP community with automated translations
to Spanish of the text similarity, QA and LFQA
datasets used for training BioMedIA.

3 Methodology

3.1 System architecture

Figure 1: Architecture of BioMedIA.

Figure 1 presents the architecture of the pro-
posed BioMedIA system. Users can input ques-
tions through free-form text, or as a voice message
that is transcripted to text. The DPR module then
encodes the question as an embedding, which is
compared against a database of crawled biomedical
texts (CoWeSe) (Carrino et al., 2021) with precom-
puted DPR embeddings. An optimized FAISS in-
dex (Johnson et al., 2019) is used for quick retrieval
of the most relevant passages. A more fine-grained
selection of passages is then performed by a ranker
model, which are forwarded to a generative QA
model producing the answer in text form. Finally,
an audio answer is also generated using a text to
speech (T2S) model.

https://huggingface.co/spaces/lfqa/lfqa
https://huggingface.co/spaces/hackathon-pln-es/BioMedIA


3.2 Datasets

We now describe the datasets used for training the
different models of the proposed system. As some
of them were available only for the English lan-
guage, as part of this work we applied the auto-
mated translation model marianMT (Tiedemann
and Thottingal, 2020) due to its precision-efficiency
balance (Junczys-Dowmunt et al., 2018).

3.2.1 DPR datasets
BioAsq_es (translated): translation of a QA corpus
for the biomedical domain (Nentidis et al., 2021),
created by a team of biomedical experts. As the
translation process might alter the wording of an-
swers and related contexts, we developed an align-
ment algorithm based on sentence tokenization and
intersection of the words present in the answer and
in the portion of the context that we are evaluating,
so that only the paragraph from the context that
matches the answer is extracted.

SQAC (Gutiérrez-Fandiño et al., 2022): a QA
dataset containing 6,247 contexts and 18,817 ques-
tions with their answers, 1 to 5 for each fragment.

SQuAD-ES (Carrino et al., 2019): an automatic
translation of the Stanford Question Answering
Dataset (SQuAD) v2 (Rajpurkar et al., 2016) into
Spanish.

3.2.2 Ranker dataset
MSMarco_es (translated): a Spanish version of
msmarco v1 (Nguyen et al., 2016) , a dataset used
for text similarity tasks. Further processing was
required to sample the queries, as there were some
of them with a different ratio of positive and nega-
tive labels than the recommended (4 neg and 1 pos)
(Reimers and Gurevych, 2019).

3.2.3 LFQA datasets
LFQA_es (translated): a Spanish version of lfqa
(Blagojevic, 2022), used for LFQA training.

3.3 Models

3.3.1 Speech to Text model
Arguably, the model holding current State-of-the-
Art (SOTA) for English is Wav2Vec2 (Baevski
et al., 2020), and although its multilingual version
XLSR-53 (Conneau et al., 2020) also works for
Spanish, it is not specific for this language. It was
also identified that no model trained with big cor-
pora like Multilingual Librispeech (Pratap et al.,
2020) was openly available for Spanish. Thus, for

this work the large version of XLSR-53 was fine-
tuned on Multilingual Librispeech, following the
procedure in (Conneau et al., 2020), to conform the
speech to text module.

3.3.2 DPR: Dense Passage Retriever
Dense Passage Retriever (DPR) (Karpukhin et al.,
2020) is the SOTA passage retrieval model, origi-
nally developed in English, consisting of two BERT
(Devlin et al., 2018) models, one for encoding pas-
sages and the other for encoding questions. For
training such a model, authors in the original pa-
per used several extractive QA datasets. For each
question, they took the relevant passage (the one
containing the answer) as the positive example. For
the negative examples, they took 4 in total per each
positive one; 3 of them are selected by picking
passages relevant to other questions, and one is se-
lected by getting the passage BM25 (Robertson and
Zaragoza, 2009) would choose as the most relevant,
excluding the positive one. In this work, a Spanish
version of DPR is implemented by using the train
split of the datasets introduced in 3.2.1, following
the hyperparameter settings in (Karpukhin et al.,
2020) and BETO (Cañete et al., 2020) as the base
model.

3.3.3 Passages Ranker
After relevant passages are selected, BioMedIA
ranks them based on relevance to the query, using
only the top 5 articles for generating the answer.
Three different configurations were used.
Multilingual Sentence Transformer: this was
the first option, since no models were available
in Spanish for this task. A Sentence Transformer
from Sentence-Transformers library (Reimers and
Gurevych, 2019) was used.
Monolingual Spanish Cross-Encoder: with the
use of Sentence-Transformers library (Reimers and
Gurevych, 2019), a Cross-Encoder was trained on
MSMarco_es, introduced above, using Roberta-
base (Gutiérrez-Fandiño et al., 2022) from the
MarIA project as the base model.
Combination of both: there was a great rank dis-
tribution disparity between both systems. With
the aim to offset each model’s bias, their similar-
ity scores are multiplied, thus producing a more
reliable rank.

3.3.4 Generative Question Answering Model
For the generative QA part of the system, the
LFQA_ES dataset is used. The model input is the

https://huggingface.co/Helsinki-NLP/opus-mt-en-es
https://huggingface.co/datasets/IIC/bioasq22_es
https://huggingface.co/datasets/PlanTL-GOB-ES/SQAC
https://huggingface.co/datasets/squad_es
https://huggingface.co/datasets/IIC/msmarco_es
https://huggingface.co/datasets/IIC/lfqa_spanish
https://huggingface.co/datasets/vblagoje/lfqa
https://huggingface.co/facebook/wav2vec2-large-xlsr-53
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/IIC/roberta-base-bne-ranker


Model WER
xlsr-53 11.5

ours 7.3*

Table 1: Word Error Rate (WER) (Ali and Renals, 2018)
for Speech to Text models on Multilingual Librispeech
test split. Lower is better.

query plus the most relevant passages to answer it,
while the output is the answer. For this type of task,
an Encoder-Decoder model architecture is needed;
as there is no such monolingual model in Span-
ish, two different multilingual Encoder-Decoder
models were used as base models:

MT5-base-lfqa: the MT5-base (Xue et al., 2020)
model was used as the base model. It is a multilin-
gual Encoder-Decoder model trained by Google on
the mC4 corpus (Xue et al., 2020).

MBART-large-lfqa: the base model used was
MBART-large (Liu et al., 2020), developed by
Meta, primarily focused on machine translation,
but also suitable for other text generation tasks like
the one at hand.

As for the hyperparameters, a similar setting
as (Blagojevic, 2022) was used for both models,
which are of similar size.

3.3.5 Text to Speech (T2S)
To translate the system output text into speech,
Meta’s T2S model (Wang et al., 2021) in Spanish
was used.

4 Experiments and Results

The standard metrics for each task are used for
evaluation.
Speech to Text: as shown in Table 1, our model
shows a significant improvement when compared
in terms of WER against the XLSR-53 model on
the Multilingual Librispeech dataset (Pratap et al.,
2020).

Dense Passage Retrieval: as no DPR models were
available for Spanish, we trained a strong base-
line, denoted as dpr-squad on Table 2, using only
the train split of SQUAD-ES, so as to gauge the
improvements provided by the extra datasets we
prepared, denoted by dpr-allqa on the same Table.
Both models, dpr-squad and dpr-allqa, were evalu-
ated (Table 2) using two metrics on the validation
set of SQUAD-ES, as this was used as the test set,
while a random portion of the train set was used
for the development set.

Metric dpr-squad dpr-allqa
F1-Macro 0.880 0.945*
avgrank 0.274 0.117*

Table 2: Test results on SQUAD-ES for both DPR mod-
els. We measure relevant vs not relevant f1 performance
(higher is better), and average rank in the ranking task
(lower is better).

Model MRR@10
Multiling-SentenceTrans. 0.5891

Roberta-Ranker (ours) 0.6880
Combination of both 0.6935*

Table 3: Eval results on MSMarco_ES for both Ranker
models. Higher is better.

Passages Ranker: Table 3 shows the performance
of the Multilingual SentenceTransformer and the
Roberta-based ranker introduced in this work in
terms of MRR@10 (Mean Reciprocal Rank @ 10)
(Craswell, 2009). It can be appreciated that the
monolingual model clearly outperforms its multi-
lingual counterpart, in spite of being formed by one
encoder instead of two.

Generative Question Answering Model: metrics
for both LFQA models on the development set of
LFQA dataset can be found at Table 4.

5 Conclusions

In this work a complete LFQA system for the
biomedical domain in Spanish was presented. To
this end, novel techniques relevant for several infor-
mation retrieval tasks in Spanish were developed,
such as a DPR, a performing Wav2Vec2 model, a
ranker model trained on monolingual data and gen-
erative QA models. We hope these contributions
will aid the Spanish NLP community in reducing
the gap to the English language in terms of NLP
resources.

Acknowledgements: this work was developed as
part of the SomosNLP Spanish Hackathon.

Metric MT5-base-lfqa MBART-large-lfqa
Rouge1 10.291* 0.511
Rouge2 1.725* 0.004
RougeL 8.919* 0.511

RougeLSum 7.987* 0.511

Table 4: Dev results on LFQA_ES for both LFQA mod-
els in rouge metrics (Lin, 2004). Higher is better.

https://huggingface.co/IIC/mt5-base-lfqa-es
https://huggingface.co/IIC/mbart-large-lfqa-es
https://huggingface.co/facebook/tts_transformer-es-css10
https://huggingface.co/IIC/dpr-spanish-passage_encoder-squades-base
https://somosnlp.org/hackathon
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