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Abstract

In recent years, the study of the intersection be-
tween vision and language modalities, specifi-
cally in visual question answering (VQA) mod-
els, has gained significant appeal due to its great
potential in assistive applications for people
with visual disabilities. Despite this, to date,
many of the existing VQA models are nor ap-
plicable to this goal for at least three reasons.
To begin with, they are designed to respond to
a single question. That is, they are not able
to give feedback to incomplete or incremental
questions. Secondly, they only consider a sin-
gle image which is neither blurred, nor poorly
focused, nor poorly framed. All these problems
are directly related to the loss of the visual ca-
pacity. People with visual disabilities may have
trouble interacting with a visual user interface
for asking questions and for taking adequate
photographs. They also frequently need to read
text captured by the images, and most current
VQA systems fall short in this task. This work
presents a PhD proposal with four lines of re-
search that will be carried out until December
2025. It investigates techniques that increase
the robustness of the VQA models. In par-
ticular we propose the integration of dialogue
history, the analysis of more than one input im-
age, and the incorporation of text recognition
capabilities to the models. All of these con-
tributions are motivated to assist people with
vision problems with their day-to-day tasks.

1 Introduction

With the advent of the deep learning (DL) era, tasks
related to computer vision (CV) and automatic nat-
ural language processing (NLP) have managed to
deliver promising results with great potential to as-
sist people with visual impairments (Radford et al.,
2021). Despite this, most of the advances were
made on research benchmarks and are far from
being of practical use for people with visual dis-
abilities.

Historically, building automated systems that

are capable of exploiting multi-modal models has
been considered an ambitious goal. However, this
last decade has seen enormous progress in VQA
systems (Antol et al., 2015; Goyal et al., 2019; An-
derson et al., 2018; Zhang et al., 2015). Given its
nature, this recent area of artificial intelligence tries
to be the bridge that allows information and visual
concepts to be converted into language, through
the application of knowledge and the advances
achieved in the disciplines of CV and NLP.

Answering a visual question is a task where the
system receives a question about an image, and
must infer the answer. This task may involve dif-
ferent CV problems such as image classification
(Schmarje et al., 2020) e.g.“is this a cat?”, object
detection (Jocher et al., 2022; Wu et al., 2019; Zhou
et al., 2022) e.g.“are there cats in the image?”, im-
age attribute extraction (Fang et al., 2014; Yu et al.,
2021) e.g.“what color is the cat?”, scene classifi-
cation (Zeng et al., 2021) e.g.“is it a beach?”, and
counting objects (Trott et al., 2017; Chattopadhyay
et al., 2016) e.g.“how many cats are there?”. There
are also studies on the spatial relationships between
objects, which are not always visible from a given
point of view (Bansal et al., 2020; Qiu et al., 2020)
e.g.“what is between the cat and the sofa?”, and
on common sense questions e.g.“why can’t the cat
sleep on the couch?”. Recent work investigates
questions such as “what is written on the player’s
shirt?” that require identifying the text associated
with a particular visual object (Kant et al., 2020).

People with visual impairments would benefit
from using VQA systems for daily activities such as
finding products when going to a supermarket, se-
lecting brands, checking prices or expiration dates.
Currently these tasks have been addressed through
platforms such as Be My Eyes1 or BeSpecular2

using sighted people on the other side of the ap-
plication, in order to answer this wide variety of

1https://www.bemyeyes.com/
2https://www.bespecular.com/
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https://www.bespecular.com/


(a) Qs: What color do these
look?.
Ans: ‘orange’.

(b) Qs: Could you tell me
what’s on this can?.
Ans: ‘green beans’.

Figure 1: Examples of answerable visual questions.

questions. The Figure 1 shows examples drawn
from the VizWiz-VQA dataset (Gurari et al., 2018),
illustrating some of these needs.

The rest of this paper is organized as follows.
Section 2 compares current benchmarks and the
three challenges not addressed by them for people
with vision problems. The next three sections de-
scribe how we propose to address such challenges.

2 Design of a CheckList oriented to vision
and language

Current NLP models are often evaluated based on
their performance on a series of individual tasks us-
ing benchmarks based on natural language datasets
such as GLUE (Wang et al., 2018). Recently,
CheckList (Ribeiro et al., 2020), proposed to per-
form this evaluation using a set of test cases with
linguistic variability. Unlike GLUE and similar
ones, CheckList evaluates linguistic capabilities
independently of the NLP task e.g.“sentiment anal-
ysis or text classification”, which allows better pre-
dicting the performance of models against data
from a domain other than the one they were trained
on. The CheckList analysis found that many im-
portant commercial NPL products are unable to
detect ontological inconsistencies in their own re-
sponses and fail to answer questions containing
co-references to previously occurring phrases, be-
ing close to 100% when a negation is found at the
end of the sentence e.g.“I thought the flight would
be horrible, but it wasn’t”.

To evaluate extensions and adaptations of VQA
models aimed at people with visual impairments,
this work will study and develop a vision and lan-
guage oriented check list based on VALSE (Par-
calabescu et al., 2021). This is a novel benchmark
designed to test visual-linguistic capabilities on pre-
trained general-purpose language and vision mod-

els. In particular, we will focus on one of its six
tests called existence. This will be potentially use-
ful to identify unanswerable questions, either due
to lack of information contained in the image, or
because the image was poorly focused, Figure 2.

3 Towards the implementation of VQA
model based on more than one image

VQA models assume a high-quality, well-framed
photograph to answer a certain question. A visu-
ally impaired person often has difficulty focusing
photographs on the regions that actually contain
the answer. Building on the work of (Bansal et al.,
2020) and (Qiu et al., 2020), we plan to explore
and adapt different existing VQA architectures to
start studying the problem of answering questions
using multiple views. Questions such as how will
the user be prompted to provide an additional view
of the image or how to combine several views, they
will be addressed as the development of the work
progresses. We will seek to improve the responses
returned by conventional systems, taking advan-
tage of the potential of the training sets already
available in the state of the art, such as VQA v2.0
(Goyal et al., 2019), Visual Genome (Krishna et al.,
2016) and VizWiz-VQA. We will adapt such sets to
our needs, avoiding the costly and time-consuming
task of building a new and own training set. In
this way, we will also reduce the biases of each
dataset, with the incorporation of new knowledge,
coming from the extra information provided by the
different points of view used.

As a result we expect more robust models for
two reasons. First, they increase the possibilities of
contextualizing the question when an image does
not contain the necessary information. Second,
multiple views provide more spatial information
about the objects in the image, possibly allowing
more precise answers to reference questions.

(a) Is there any writing on
this medicine bottle?.

(b) Is there a light in the
room?.

Figure 2: Examples of unanswerable visual questions.



4 Answering visual questions that
consider the conversational history

People naturally ask questions that retrieve informa-
tion from what we said before in the conversation;
this is known as the conversational history. For
example, consider an image where there is a group
of people waiting for the bus and others passing
through the street in front. The following conver-
sation occurs. Q1:“Are there people at the stop?”
A1:“Yes”. Q2:“How many people are there?”.
VQA models that do not consider history will re-
spond to Q2 by counting all the people when only
the ones at the stop are relevant.

In this work, we plan to analyze the type of con-
versation history dependency present in visual dia-
log datasets such as VisDial (Das et al., 2016) and
GuessWhat?! (de Vries et al., 2017), and devise
methods to classify them according to the type of
ellipses found. Also, it is planned to extend VQA
systems to try to integrate this story effectively
(Agarwal et al., 2020). Finally, using works such
as (Mazuecos et al., 2021) as a starting platform,
we will start by solving limited domains of ques-
tions belonging to the VizWiz-VQA specialized
dataset for people with visual disabilities. Initially,
questions with binary answers (yes and no) will be
addressed, and the study will be expanded incre-
mentally to solve the full spectrum.

5 Study integration of Optical Character
Recognition (OCR) models

Despite the results shown in (Bigham et al., 2010),
which shown that approximately 21% of the ques-
tions asked by visually impaired people necessarily
involve reading or understanding the text included
in the images captured from the environment, most
of the current VQA systems are not prepared to
be able to carry out this task. Although there are
works such as (Kant et al., 2020), (Gao et al., 2020)
and (Gao et al., 2021) that address the construc-
tion of VQA systems capable of reading, many
focus on solving certain types of tasks and their per-
formance are evaluated on generated sets such as
TextVQA (Singh et al., 2019) and ST-VQA (Biten
et al., 2019), where the images do not present qual-
ity or associated problems. Therefore, questions
like “is this product expired?” or “Can you tell
me what temperature the oven is set to?” remains
an unsolved challenge. Currently, given the high
accuracy offered by systems such as Keras-OCR,
Tesseract and EasyOCR , we began by analyzing

their performance on VizWiz-VQA samples that
required reading or visual reasoning about the text
contained in the image. To do this, a test pipeline
was designed, where the results produced by each
OCR system fed a pretrained question answering
model based on the context (CoQA).

Based on the results and qualitative analysis car-
ried out, it was identified that in many cases the
incorporation of automatic systems to recognize
text in the images allowed obtaining more precise
answers, even more precise than those answered
by humans. Figures 3(a)3 and 3(b)4 shows exam-
ples from the VizWiz dataset where EasyOCR was
able to predict a correct answer, while ∼50% of
the registered human annotations failed to do so.

6 Conclusion

Throughout this article, different lines of work and
research are proposed to adapt existing VQA mod-
els to the particularities of visually impaired and
blind people. The incorporation of reading capa-
bilities and understanding of text in scenes in con-
ventional VQA models, favor the independence of
blind users, often subject to the wishes of sighted
people to assist them in unfamiliar environments.
The possibility of obtaining answers based on more
than one photograph allows, on one hand, to reduce
the complexity of the set of instructions for use and
the design of the application’s user interfaces, and
on the other hand, it provides greater flexibility to
the blind user when performs the capture of the
image. Finally, a system capable of understanding
incremental, conversational and spoken questions
on multiple images generates a more organic and
natural experience of human-machine communica-
tion not only for visually impaired people but also
for those sighted.

3Details in https://tinyurl.com/3yvcbudp
4Details in https://tinyurl.com/ymhvcrmk

(a) What is this?. (b) For how long do i cook
this in the microwave?.

Figure 3: Examples where the ocr model responds better
than most people.
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