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Abstract
The efficacy of segmentation models for CT vol-
umes is limited to the contrast phase they were
trained on and often do not work for the non-
contrast images. We introduce a domain adap-
tation approach leveraging a single latent space
discriminator to train a robust segmentation model
for segmenting CT volume irrespective of the con-
trast dose. Our model is trained on two publicly
available non-contrast and arterial phase image
datasets, and validated on both public and pri-
vate datasets. Evaluation of internal and external
tests demonstrates improved segmentation quality
while leveraging less data than baseline models.

1. Introduction
Computed tomography imaging (CT) is an essential modal-
ity for evaluating the genitourinary system by providing
high-quality structural and anatomical information. The
utility of CT imaging has been further augmented through
artificial intelligence (AI) applications, leveraging auto-
matic/manual segmentation of the kidney environment for
the estimation of kidney volume, tumor classification, and
disease staging (Gardan et al., 2018; Demirjian et al., 2022).
However, AI models are often trained on images from a
single contrast phase. Each of which, as seen in Figure 1,
has a uniquely different appearance, particularly for soft
tissue. Furthermore, imaging appearance within each phase
is subject to variations based on patient physiology and
image acquisition protocol. Therefore, models trained on
single institution datasets tend to be more sensitive toward
patient population, acquisition device, and imaging protocol.
Curating representative datasets from multiple institutions
with expert annotations would be cost-prohibitive. In prior
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Figure 1. Abdominal CT scan of a single patient representing the
appearance of kidney and surrounding organs under different con-
trast phase acquisitions - No contrast (top left), delayed (top right),
venous (bottom left) and arterial (bottom right) phases

literature, two key solutions have been studied to improve
the robustness of segmentation models — (i) curation of
application-specific datasets and (ii) domain adaptation to
bridge the gap in image appearance.

Curation of datasets primarily focuses on collecting and re-
leasing datasets for specific contrast doses, which supports
robust algorithmic development. Segmentation of the kidney
has been a critical component in multi-organ segmentation
challenges. The KiTs segmentation challenge provides a
well-curated benchmark for developing kidney-specific seg-
mentation models on 300 arterial phase CT images (Heller
et al., 2023). Li et al. developed a dataset of 257 CT scans
from Quanzhou Hospital to develop a kidney segmentation
model able to detect kidney stones on non-contrast CT re-
liably scans (Li et al., 2022). Analysis of best-performing
models has found that 3D U-net architectures with resid-
ual connections perform best for segmenting kidneys and
related structures (Heller et al., 2023). These datasets pro-
vide access to expert kidney annotations but are limited to a
single contrast phase with a carefully selected patient popu-
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lation. Limiting efficiency of models when applied to other
phases or patient populations.

Yu et al. trained a multi-organ nnU-net model using simulta-
neous contrast and non-contrast images. The authors found
the model to achieve high dice scores for kidney segmen-
tation with average DICE scores of 0.96 (Yu et al., 2022).
Inspection of output segmentation found the model to un-
derperform for non-contrast images as measured by lower
quality assessment scores. Tang et al. took a similar ap-
proach where early and late arterial phase scans were used
to train a patch-based network to segment renal structures
(Tang et al., 2021). The group found the model to perform
adequately on test data, with no distinction between late and
early arterial phase performance. Lee et al. attempted to
reduce the dependency of labeling multiple phases by using
paired samples where only the contrast-enhanced volume
was annotated (Lee et al., 2022). They were able to out-
perform existing models but were limited by the need for
correct anatomical correspondence between scans. Domain
adaptation techniques are another key strategy for build-
ing robust models. These techniques allow models to learn
similar representations from diverse data, allowing them to
perform robust segmentation tasks. Ananda et al. removed
the dependency for paired contrast/non-contrast CT samples
in liver segmentation by training a dual discriminator-based
network penalizing model for retaining phase information
while ensuring consistency of the augmentations. (Ananda
et al., 2022). Dinsdale et al. implemented a similar multi-
step approach to improve segmentation quality by improving
resiliency to age-related physiological changes in Brain MRI
segmentation. A discriminator concatenates features from
the U-net bottleneck and decoder; it is then trained to pre-
dict patient ages. Confusion loss is introduced in a second
training step to remove the encoding of age-related features
that previously biased the segmentation model (Dinsdale
et al., 2021). However, none of the prior works deal with
the contrast discrepancy issue for segmenting normal and
abnormal kidneys.

In this work, we aim to develop a novel phase-agnostic seg-
mentation model that reliably segments normal and abnor-
mally functioning kidneys across different contrast phases
based on a data-efficient domain adaptation technique. 1

2. Methods
2.1. Data Description

Two datasets with significantly different contrast phase im-
ages were used for model development. Contrast-enhanced
images were obtained via the KiTS21 dataset (Heller et al.,
2023), while non-contrast images were obtained from the

1https://github.com/ramon349/domainadapt_
segmentation

Table 1. Train, validation, and test splits for each of the datasets.
Mayo Clinic contrast and non-contrast datasets were only treated
as external tests and were not included in the training and hyperpa-
rameter tuning.

Dataset Number of Volumes Train Val Test
KiTS21

(Arterial) 300 225 (75%) 56 (19%) 19 (6%)

STU
(Non Contrast) 257 192 (75%) 48 (19%) 17 (6%)

Mayo Clinic
(Venous) 63 - - 63

Mayo Clinic
(Non-Contrast) 42 - - 42

dataset curated by Li et al., referred to as the STU dataset (Li
et al., 2022). Both datasets were split into training, valida-
tion, and testing following a 75/19/6 % split. A mixed-phase
dataset was also formed by combining corresponding splits
of the KiTS21 and STU datasets. Additional external test
sets were collected following institutional review board ap-
proval from Mayo Clinic. We collected CT scans of patients
who underwent treatment for kidney dysfunction, and we
leveraged venous phase and non-contrast CT scans as they
were the most prevalent studies. Segmentation masks were
annotated by expert urologists using visual assessment. Ta-
ble 1 summarizes the training and testing splits of our data.
All datasets were pre-processed to only consider the kidney
tissue masks, and tumor and cyst masks were not included
for this segmentation task. CT Volumes and kidney masks
were resampled to a resolution of (0.75mm x 0.75mm x
0.75mm) using linear and nearest neighbor interpolation,
respectively. CT image intensities were windowed to be in
the range (-79, 304) and then scaled to the range (0 - 1).

2.2. Model Description

We design a model with a main segmentation task branch
with DICE loss and an auxiliary branch from bottleneck for
contrast phase identification with confusion loss that can
simultaneously learn kidney segmentation and stay robust
to image contrast appearance. The model was trained to
segment voxel patches X where xϵR(1x128x128x64).The U-
net encoder produces latent representation z = genc(X)
with dimensionality zϵR64x16x16x16. The decoder produces
segmentation mask ŷ = gdec(z). One auxiliary classifier
ϕ was introduced to predict binary contrast phase p̂ from
U-net bottleneck features. The classifier was formed by
four 3D convolution layers with relu activations followed by
linear layers, producing the final binary phase classification.

Within each minibatch, the model is trained using three
learning steps alternating between learning segmentation
loss and removing phase information from the U-net en-
coder. The first step minimizes the DICE and cross-entropy
(CE) loss calculated using difference between output seg-
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Figure 2. Proposed model diagram for performing domain adapta-
ton on the basis of contrast phase

mentation ŷ and ground truth segmentation y, updating the
U-net model. A second step updated the auxiliary classi-
fier by minimizing the phase CE loss, allowing the phase
classifiers to learn which model features indicate phase sta-
tus. The phase loss calculation was constrained to only
include patches where the kidney mask was present due to
contrast information being uncertain in patches from non
kidney regions. The third step updated the backbone in
favor of features agnostic to phase information. The out-
puts of the auxiliary classifiers (p̂) are fed to a KL diver-
gence against the uniform distribution(Tzeng et al., 2015).
Back-propagation of the error across the entire U-Net back-
bone encouraged the model to learn features independent
of the contrast phase. The constraint based on the presence
of a kidney mask was also applied for this loss propaga-
tion. The DICE+CE loss is also included during this final
step to guide the model updates toward being phase ag-
nostic while preserving kidney segmentation performance.
The total optimization loss of our model is expressed as
L = LCE+DICE(y, ŷ)+λLCE(p, p̂)+αLconf (p̂), where
λ and α are the regularization parameters.

2.3. Training Details

Two separate baseline 3D SegResNet models were trained
for the internal datasets STU and KiTS21 (Myronenko et al.,
2024). A mixed-phase model was trained using a com-
bination of both datasets. The mixed phase and domain
adaptation models were trained using the mixed dataset. To
evaluate the data efficiency of the domain adaptation tech-
nique, separate models were trained with a mixed dataset
that was x% KiTS21 and only y% STU data. Training for
all models followed the same training scheme in terms of
pre-processing, augmentation, and initial learning parame-
ters.

Each minibatch saw two volumes randomly sampled, where

eight 3D voxels of size (124,124,64) were randomly ex-
tracted. Patches were selected such that 50% were centered
around a kidney mask while the remainder were centered
around non-kidney regions. Each patch was then randomly
augmented through random rotations, affine, and intensity
changes. Hyperparameters λ and α were selected through
a grid search via the optuna framework(Akiba et al., 2019).
The search ran for 100 trials over 50% of the training data,
and the average dice score on validation determined the
optimal set of parameters. In our study, the best values were
λ = 0.134 α = 0.084, obtaining an average DICE of 0.747.
Models were trained for 500 epochs using Adam optimizer
with an initial learning rate of 0.001 and linear learning rate
decay. Training was halted early if no improvement was
seen for 20 epochs.

3. Results
Table 2 demonstrates comparative model performance eval-
uated using the DICE score, and auto bootstrap sampling
was used to obtain 95% confidence intervals. Studying the
single-phase models, i.e., trained on data from one phase
(0/100 or 100/0 in Table 2), we found that they performed
optimally on their corresponding phase, achieving DICE
scores above 0.8 while achieving dice below 0.6 on other
phases. In evaluating the external data from Mayo Clinic,
the STU-trained model (100/0) has a significant drop in
performance on both contrast data. This is likely due to
wide variations between non-contrast to contrast tissue char-
acteristics. The model trained on the KiTS21 only dataset
(0/100) also observe a drop in model performance; however,
it is less severe than the STU models. The trend is then
swapped when observing the non-contrast data from Mayo
Clinic, where the STU-based model performs best.

As a baseline, a mixed-phase model trained using an equal
proportion (50/50) of contrast and non-contrast images
demonstrates improved performance for STU and KiTS21
test sets compared to single-phase models. Performance
in Mayo Clinic also improves, achieving a DICE score
above 0.8 for both phases. The mixed model trained using
a smaller proportion of non-contrast studies (10/90) notice-
ably showed a slight decrease in performance in the non-
contrast studies. The model trained with one auxiliary clas-
sifier performs similarly to the mixed-phase model. While,
the model with auxiliary classifier trained with a smaller
proportion of non-contrast studies (10/90), improves the seg-
mentation performance of all the contrast studies compared
to the baseline approaches. Achieving the highest perfor-
mance on the venous phase external data of Mayo Clinic
with a dice score of 0.88. Performance on Mayo Clinic’s
non-contrast images is higher (0.7987) than the mixed phase
model (0.7854) trained on the same proportion of data.

We also evaluated the performance of a model using two aux-
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Model %non Contrast/
%Arterial

KiTS
Arterial
(N=19)

STU
Non Contrast

(N=17)

Mayo Clinic
Venous
(N=63)

Mayo Clinic
Non Contrast

(N=42)
All Datasets

3D SegResNet

100/0
0.5850

(0.5088,0.6612)
0.8968

(0.8399,0.9537)
0.5032

(0.4929,0.5136)
0.8000

(0.7082,0.8917)
0.6171

(0.4612,0.7731)

0/100
0.9573

(0.9363,0.9783)
0.5880

(0.4954,0.6805)
0.8325

(0.7061,0.9590)
0.5718

(0.4999,0.6438)
0.7966

(0.6278,0.9654)

10/90
0.9543

(0.9328,0.9758)
0.9172

(0.8579,0.9765)
0.8573

(0.7387,0.9760)
0.7854

(0.6688,0.9019)
0.8697

(0.7505,0.9889)

50/50
0.9541

(0.9241,0.9840)
0.9541

(0.9079,1.0000)
0.8523

(0.7483,0.9563)
0.8260

(0.7344,0.9177)
0.8885

(0.7943,0.9827)

3D SegResNet+
1 Aux Classifiers

10/90
0.9619

(0.9494,0.9745)
0.9214

(0.8414,1.0000)
0.8804

(0.7915,0.9694)
0.7987

(0.6844,0.9130)
0.8892

(0.7751,1.0000)

50/50
0.9511

(0.9327,0.9695)
0.8872

(0.8215,0.9529)
0.8290

(0.7410,0.9170)
0.8322

(0.7439,0.9205)
0.8654

(0.7756,0.9553)

3D SegResNet+
2 Aux classifiers

10/90
0.9636

(0.9492,0.9780)
0.9261

(0.8641,0.9880)
0.8479

(0.7231,0.9728)
0.8115

(0.7098,0.9132)
0.8773

(0.7705,0.9841)

50/50
0.9632

(0.9529,0.9735)
0.8928

(0.8121,0.9735)
0.8173

(0.7157,0.9188)
0.8212

(0.7224,0.920
0.8685

(0.7689,0.9680

Table 2. Model performance was evaluated on each of our test sets using the DICE metric. 95% confidence intervals are reported.
Performance measured in DICe score. The best-performing model is highlighted in BOLD.

iliary classifier branches, one leveraging the bottleneck fea-
tures and another using decoder outputs. Similarly, we find
that training on a skewed proportion (10/90) of non-contrast
and contrast scans improved performance over training on a
balanced proportion.

4. Conclusion
Often, the primary challenge for developing a robust seg-
mentation model for CT exams is the access to diverse
and balanced training data with representation of all con-
trast phases. This work proposes a novel data-efficient do-
main adaptation technique to design a robust segmentation
model with an auxiliary branch for handling variations in
contrast dosages. Experimental results for kidney segmen-
tation demonstrated that training a U-Net model on equal
data representation from two contrast phases (arterial and
non-contrast) improves performance on unseen phases from
external dataset with poorly functioning kidneys. How-
ever, similar or even better performance can be achieved
on both normal and poorly functioning kidneys by domain-
adaptation with auxiliary branch even with a smaller amount
of data from non-contrast phase. Additionally, we compared
the benefits of training a U-Net segmentation model with
only a single latent auxiliary classifier vs. an auxiliary latent
classifier and a mask discriminator. We found that the one
discriminator model obtained the best performance, which
leads us to the conclusion that a robust encoder is essential
for domain adaptation over the penalizing decoder compo-
nent.
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