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Abstract
Sewerage infrastructure is among the most expen-
sive modern investments requiring time-intensive
manual inspections by qualified personnel. Our
study addresses the need for automated solu-
tions without relying on large amounts of labeled
data. We propose a novel application of Self-
Supervised Learning (SSL) for sewer inspection
that offers a scalable and cost-effective solution
for defect detection. We achieve competitive re-
sults with a model that is at least 5 times smaller
than other approaches found in the literature and
obtain competitive performance with 10% of the
available data when training with a larger architec-
ture. Our findings highlight the potential of SSL
to revolutionize sewer maintenance in resource-
limited settings.

1. Introduction
The high expenses and labor-intensive process of gather-
ing labeled data have driven researchers to seek innovative
methods to train neural networks without annotations or
with minimal annotated data. Self-Supervised Learning
(SSL) emerges as an unsupervised learning strategy in which
models learn to understand and represent data using their
structure as the supervision signal (Ozbulak et al., 2023).
The application of SSL techniques to computer vision has
revolutionized the field, not only pushing the boundaries
of unsupervised pretraining performance on popular bench-
marks, such as ImageNet (Deng et al., 2009), but also lead-
ing researchers to adapt these methods to effectively tackle
domain-specific challenges.

Sewerage infrastructure is one of the most costly in mod-
ern society, with traditional manual inspections required
to identify defects. This process is limited by the number
of qualified personnel and the time it takes to inspect each
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pipe (Haurum & Moeslund, 2021). Given these limitations,
adopting an automated approach is both practical and nec-
essary. However, the success of these methods depends on
the availability of large amounts of labeled data, which is
difficult to collect due to the shortage of inspectors. We rec-
ognize the necessity to create automated solutions without
the need for vast amounts of labeled data.

We are the first to propose applying self-supervised learning
to the domain of sewer infrastructure inspection. We intro-
duce a straightforward approach that uses the DINO method-
ology that achieves competitive results with state-of-the-art
methods without the need for complex implementations.
Our approach not only demonstrates the adaptability of SSL
in a specialized field but also sets the groundwork for future
innovations in maintaining critical urban infrastructure.

We evaluate our approach on the Sewer-ML dataset (Hau-
rum & Moeslund, 2021), a multi-label dataset that contains
1.3 million images and 17 different types of defects. This
study demonstrates strong results (50.05 F2CIW and 87.45
F1Normal) when fine-tuning with only 10% of the available
data, significantly reducing the need for annotations. Ad-
ditionally, we successfully trained a much smaller model
compared to state-of-the-art methods, making it ideal for de-
ployment on small devices for live detection and enhancing
scalability in resource-limited settings.

2. Related work
Self-supervised learning. SSL methods can be broadly
categorized as contrastive or non-contrastive based on how
they avoid representation collapse (Balestriero et al., 2023;
Ozbulak et al., 2023). Contrastive methods use positive
and negative pairs to help the model distinguish between
different instances by comparing similar and dissimilar ex-
amples (Chen et al., 2020; He et al., 2020). On the other
hand, non-contrastive methods avoid explicit negative pairs
and use strategies like clustering (Caron et al., 2020), dis-
tillation (Caron et al., 2021), redundancy reduction (Bardes
et al., 2022), or masked image modeling (Assran et al., 2022;
2023) to ensure rich feature extraction.

Among the non-contrastive distillation methods, we high-
light DINO (Caron et al., 2021) as it is part of our methodol-
ogy. Self-distillation involves a teacher network generating
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pseudo-labels that a student network aims to replicate, en-
couraging the student to learn robust representations. The
student and teacher networks share the same architecture
and the teacher parameters are updated using an exponential
moving average of the student ones, providing stable targets
and preventing the model from collapsing to trivial solutions.
We explain in detail how DINO is used within our approach
in Section 3.

Recent research on the application of self-supervision to
domain-specific tasks has shown encouraging results. For
instance, SSL has achieved state-of-the-art performance in
pixel-wise anomaly localization (Li et al., 2021). Moreover,
SSL has matched and surpassed the performance of clini-
cal experts in medical imaging (Zhang et al., 2023; Azizi
et al., 2023), has demonstrated superior performance in 3D
facial image texture reconstruction (Zeng et al., 2021), and
has successfully addressed label deficiencies in training the
backbone network for an RGB-D object tracking problem
(Zhu et al., 2024).

Sewer-ML literature. The Sewer-ML benchmark intro-
duced state-of-the-art graph-based models such as KSSNet
(Wang et al., 2020), as well as popular vanilla architectures
like ResNet-101 (Wu et al., 2019) and TResNet (Ridnik
et al., 2020) (see Table 1). Despite their different method-
ologies, these approaches achieve very similar performance.

Seeking to improve the presented baseline, Haurum et al.
(2022a) proposed using a hybrid vision transformer com-
bined with a Sinkhorn tokenizer (HViT-Sk). This method
enhances model efficiency and accuracy by using CNN-
generated feature maps as inputs to the ViT (Dosovitskiy
et al., 2020) and employing the Sinkhorn tokenizer to elimi-
nate redundancies. Building on this, they later proposed a
multi-task learning approach (CT-GAT), where a common
backbone network is jointly optimized by multiple task-
specific GNN heads, resulting in a more robust and versatile
inspection system (Haurum et al., 2022b).

Moreover, Tao et al. (2022) combine features extracted by a
graph-based module and a CNN with block attention mod-
ules. The graph-based module is used to capture the cor-
relation information between labels. Similarly, Hu et al.
(2023) worked on maximizing the defect-relevant infor-
mation. They proposed a Self-Purification Module (SPM)
that splits the feature representation space into the sum
of two spaces: defect-relevant and defect-irrelevant fea-
tures. They optimized the network using three loss terms:
one to purify defect-relevant features, one to decorrelate
defect-irrelevant features, and one to prevent collapse. Fur-
thermore, Zhao et al. (2022) used Bayesian techniques to
train an “uncertainty-aware” neural network (TMSDC). The
main objective is that the model learns to “know the un-
known” so it avoids making over-confident predictions on
under-represented observations.

Table 1. Comparison with methods found on Sewer-ML litera-
ture. We present experiments with ViT-T/16 and ViT-S/16 using
100% of the data for fine-tuning. Our approaches use smaller and
thus more compute-efficient architectures.

METHOD PARAMETERS F2CIW (%) F1Normal (%)

L
IT

E
R

A
T

U
R

E

RESNET101 42.5M 53.26 79.55
KSSNET 45.2M 54.42 80.60
TRESNET-L 53.6M 54.63 81.22
TRESNET-L+TMSDC 53.6M 54.54 81.15
CT-GAT 24M 61.70 91.94
RESNET-50-HVIT-SK 25.3M 60.42 92.41
TRESNET-L+SPM 53.6M 63.38 91.57

O
U

R
S VIT-T/16-100% 5.5M 58.18 89.76

VIT-S/16-100% 21.6M 60.39 90.13

Although our results do not surpass the state-of-the-art, they
provide competitive performance with much smaller archi-
tectures, providing a low-compute, cost-efficient methodol-
ogy, reducing data-labeling costs and improving scalability.

3. Methodology
3.1. Standard approach to SSL

In computer vision, self-supervised learning teaches neural
networks to understand images using unlabeled data. This is
accomplished by generating multiple random augmentations
of the same image and training the model to recognize that
these different views all originate from the same source.
This is referred to as the pretext task and aims to teach the
model to generate similar embeddings for similar inputs and
dissimilar embeddings for dissimilar ones.

Mathematical definition. Let fθ be an encoder backbone
with parameters θ that produces vector representations r
from augmented views xt of an image x produced by a
stochastic function T(x) = xt. Representations r can be
mapped to projections z and predictions z′ using projector
gγ and predictor qτ functions, where gγ(fθ(x)) = z and
qτ (gγ(fθ(x))) = z′. In this context gγ and qτ are MLPs.

Like other popular self-supervised approaches (Chen et al.,
2020; Grill et al., 2020; Caron et al., 2020; Bardes et al.,
2022), DINO employs a projection head on top of the en-
coder backbone, with the loss being computed on the projec-
tor’s output. The projector function acts as an informational
bottleneck, ensuring that the backbone’s representations are
not overly biased to merely comply with the self-supervised
learning objective (Chen et al., 2020).

This comprises the intuition behind self-supervised pretrain-
ing. For evaluating performance on downstream tasks, only
the encoder backbone from the pretraining phase is retained.
Afterwards, a labeled dataset is used to either fine-tune the
model or train a linear classifier on top of the frozen back-
bone.
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3.2. Implementation details

Architecture. For the self-supervised pretraining, we
used the DINO methodology. For the encoder backbones,
we used the ViT Tiny (ViT-T/16) and ViT Small (ViT-S/16)
models, which primarily differ in the number of parame-
ters—5.5M and 21.6M respectively—and computational
complexity, with ViT-T/16 having 192 hidden layers and 3
heads, and ViT-S/16 having 384 hidden layers and 6 heads.

The projector of the models comprised an MLP with two
hidden layers of size 2048 and an output layer of size 256.
The loss was computed with respect to 32,768 prototypes.
For other DINO hyperparameters, we adhered to the recom-
mendations in the original paper (Caron et al., 2021). The
training was performed using Pytorch 2.0.2 (Paszke et al.,
2019) on 16 Tesla T4 GPUs, using the maximum batch
size that could fit into memory for each model. Our code
development was greatly inspired by the solo-learn library
(da Costa et al., 2022).

Global views instead of multi-crop. Sewer-ML is a
multi-label dataset where defects vary in shape and size. To
avoid matching local views with fewer defects (or none) to
global views containing the full image, we did not perform
multi-crop. This decision was made to prevent potential
mismatches in embeddings and to avoid hindering the neural
network optimization during pretraining.

Optimization. The experiments for pretraining were
conducted over 35 epochs using the AdamW optimizer. The
base learning rate was set to 5× 10−5 × batch size/256. A
linear warmup starting at 3× 10−5 was applied for the first
10 epochs, followed by a cosine scheduler with no restarts.
The base and final decay rates (τ ) were 0.996 and 0.999,
respectively, with a minimum learning rate of 1× 10−6.

For fine-tuning, we took the pretrained backbone and placed
an untrained classifier head on top of it. The experiments
were run for 45 epochs using the AdamW optimizer, with
a base learning rate of 5× 10−4 × batch size/256. A mul-
tistep scheduler with a gamma of 0.1 was used, with step
milestones at epochs 15 and 35.

Loss function and positive weights. Given the unbal-
anced nature of the dataset and the superior importance of
recall over precision in the benchmark metrics, it is neces-
sary to craft a custom-weighted loss to effectively address
the task. We optimized the model with respect to a binary
cross-entropy loss with positive weighting. The coefficients
were built based on the class importance values proposed
in the benchmark and were calculated using the following
formula:

pos weightc = 2×

(
1 +

CIWc

1
C

∑C
c=1 CIWc

)

Table 2. Performance comparison with varying data sizes. This
table presents a comparison in performance between the proposed
SSL approach and a fully supervised setting across different data
sizes (10%, 50%, and 100% of the total dataset) for the ViT-T/16
and ViT-S/16 models.

SSL + FINETUNING FULLY SUPERVISED

METHOD F2CIW (%) F1Normal (%) F2CIW (%) F1Normal (%)

VIT-T-16-HYBRID 37.95 80.96 - -
VIT-T/16-LINEAR 25.84 57.04 - -
VIT-T/16-10% 28.58 82.14 32.65 82.29
VIT-T/16-50% 52.78 88.32 50.15 87.60
VIT-T/16-100% 58.18 89.76 58.94 89.68

VIT-S/16-HYBRID 43.48 86.54 - -
VIT-S/16-LINEAR 30.87 62.65 - -
VIT-S/16-10% 50.05 87.45 36.44 83.48
VIT-S/16-50% 57.17 90.18 56.23 88.60
VIT-S/16-100% 60.39 90.13 58.81 89.95

The motivation behind this formula is to first normalize each
class’s importance value by dividing it by their mean. This
provides insight into how significant each class is relative
to the overall distribution. Subsequently, we add 1 to this
term to place greater emphasis on the positive samples, then
multiply by 2 to further enhance the emphasis.

3.3. Sewer-ML benchmark metrics

To assess the performance of the multi-label benchmark, we
use the proposed metrics. A weighted F2 metric (F2CIW )
for defect prediction and a regular F1 score (F1Normal) for
non-defect predictions (Haurum & Moeslund, 2021). The
weights for the F2 metric are assigned to each defect class
based on their economic impact. Moreover, the F2 score is
employed to prioritize recall over precision since missing
a defect has a greater economic impact than generating a
false positive.

4. Results
We conducted several experiments to evaluate our models.
These experiments include reporting metrics for the pre-
trained architectures by (i) training a linear classifier on top
of the frozen backbone, (ii) fine-tuning the models using
10%, 50%, and 100% of the data, and (iii) pretraining the
models using a hybrid approach that incorporates both self-
supervised and supervised losses. For comparison purposes,
we also trained the models in a fully supervised setting.
All experiments were performed using the ViT-T/16 and
ViT-S/16 architectures.

Performance. Our experiments with the ViT-S model
demonstrate its robustness across varying data levels. When
using 100% of the data for fine-tuning, its performance was
on par with state-of-the-art methods. Using 50% of the
data, ViT-S performed nearly as well as when using the full
dataset. Even with just 10% of the data, the model showed
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solid baseline performance, proving effective in data-scarce
scenarios (see Table 2). For both architectures, the hybrid
approach enhanced non-defect detection but demonstrated
limited performance for identifying defects. We hypothesize
that the self-supervised signal enabled the model to encode
richer representations of non-defective pipes. However, this
also limited the feature exploitation of the supervised loss,
affecting defect detection results.

The findings underscore the competitive performance of our
proposed self-supervised learning approach with fine-tuning
compared to fully supervised learning. While the fully super-
vised method achieves slightly higher metrics in smaller ar-
chitectures (ViT-T/16) with 10% of the data for fine-tuning,
the SSL method shows substantial improvements with in-
creased model complexity, surpassing the performance of
all ViT-S/16 configurations.

Parameter count efficiency. Our approach significantly
reduces the size of the networks required for training while
maintaining effective performance. While some state-of-the-
art methods exceed 50 million parameters, our largest model
has approximately 21.6 million, achieving similar results
with around half the size. Moreover, using the ViT-T model,
we obtained satisfactory outcomes even when fine-tuning
on just 50% of the data, achieving similar performance to
the approaches proposed in the original paper but with a
model at least 9 times smaller. Furthermore, fine-tuning the
ViT-T on the whole dataset yields very similar results to
the ones obtained by fine-tuning ViT-S on 50% of the data,
demonstrating the effectiveness of our approach even with
smaller models.

Simplicity and effectiveness of the approach. Current
methods often require specialized knowledge and extensive
labeled data. In contrast, our approach is straightforward,
involving only pretraining and fine-tuning, which are stan-
dard practices in transfer learning, as well as requiring sig-
nificantly fewer labels due to our use of self-supervision
methodologies. This simplicity not only makes our method
more accessible but also offers greater adaptability, allowing
for effective performance with less labeled data while still
achieving comparable results to more complex methods.

Informational content. We employed the RankMe met-
ric (Garrido et al., 2023) to monitor the informational con-
tent of representations during pretraining. A higher value
suggests greater informational content. Results showed that
hybrid signals had significantly lower semantic content (see
Table 3), validating that self-supervision produces richer
representations, whereas supervised methods primarily ex-
ploit local features. Furthermore, the ViT-S demonstrated a
lower informational content than ViT-T when pretrained in
a self-supervised manner. We presume that this is due to the
absence of multi-crop, which acts as a regularizer for larger
models (Tan et al., 2023).

Table 3. RankMe values. Final values gathered during training.

METHOD RANKME

VIT-T/16 74.37
VIT-T/16 HYBRID 26.71
VIT-S/16 50.56
VIT-S/16 HYBRID 26.87

5. Conclusions
Our research demonstrates the effective application of self-
supervised learning to the domain of sewer infrastructure
inspection, specifically in defect detection, a field tradition-
ally reliant on labor-intensive and costly manual inspections.
This approach not only achieves high-performance results
with minimal labeled data but also provides a scalable and
cost-effective solution for urban infrastructure maintenance.

Even when fine-tuning with only 10% of the available data,
our research achieves notable results. We propose deploying
a smaller model in production—approximately 20% the size
of state-of-the-art models—that delivers robust performance.
This approach reduces the need for extensive labeling and
optimizes model size for on-device scalability in live de-
tection. Although not the primary focus of this study, we
observed that the ViT-T/16 model performs well in a fully
supervised setting, which is a promising result considering
its compact architecture.

For future research, it is essential to investigate the potential
of various self-supervised learning methods that have not yet
been applied to sewer infrastructure inspection, particularly
by assessing their performance in low-data, low-compute
environments. While Sewer-ML is a curated dataset, it may
not fully reflect the complexities of real sewer inspections,
particularly the defect-to-non-defect ratio. Therefore, the
proposed method might not be immediately applicable out-
of-the-box and may require extensive experimentation with
other self-supervised learning techniques. Nevertheless,
training a foundational model on sewer pipes offers the
novel potential for transferability to a broader range of tasks
within this industry.
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L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library, 2019.

Ridnik, T., Lawen, H., Noy, A., and Friedman, I. TResNet:
High Performance GPU-Dedicated Architecture, 2020.

Tan, F., Saleh, F., and Martinez, B. Effective Self-supervised
Pre-training on Low-compute Networks without Distilla-
tion. In International Conference on Learning Represen-
tations (ICLR), 2023.

Tao, M., Wan, L., Wang, H., and Su, T. CAFEN: A
Correlation-Aware Feature Enhancement Network for
Sewer Defect Identification. In 2022 21st International
Symposium on Communications and Information Tech-
nologies (ISCIT), pp. 204–209, 2022. doi: 10.1109/
ISCIT55906.2022.9931233.

Wang, Y., He, D., Li, F., Long, X., Zhou, Z., Ma, J., and
Wen, S. Multi-label classification with label graph su-
perimposing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 12265–12272, Apr.
2020.

Wu, B., Chen, W., Fan, Y., Zhang, Y., Hou, J., Liu, J., and
Zhang, T. Tencent ml-images: A large-scale multi-label
image database for visual representation learning. IEEE
Access, 7:172683–172693, 2019.

Zeng, X., Hu, R., Shi, W., and Qiao, Y. Multi-view self-
supervised learning for 3D facial texture reconstruction
from single image. Image and Vision Computing, 115:
104311, 2021. ISSN 0262-8856. doi: 10.1016/j.imavis.
2021.104311.

Zhang, C., Zheng, H., and Gu, Y. Dive into the details
of self-supervised learning for medical image analysis.
Medical Image Analysis, 89:102879, 2023. ISSN 1361-
8415. doi: 10.1016/j.media.2023.102879.

Zhao, C., Hu, C., Shao, H., Wang, Z., and Wang, Y. Towards
Trustworthy Multi-Label Sewer Defect Classification via

Evidential Deep Learning. ICASSP 2023 - 2023 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1–5, 2022.

Zhu, X.-F., Xu, T., Atito, S., Awais, M., Wu, X.-J., Feng, Z.,
and Kittler, J. Self-supervised learning for RGB-D object
tracking. Pattern Recognition, pp. 110543, 2024. ISSN
0031-3203. doi: 10.1016/j.patcog.2024.110543.

6



A. Image Augmentations
During self-supervised pretraining, we employed several augmentations to enhance the diversity of the training dataset.

Specifically, we applied random crops and resized the images to 224x224, using a scale ranging from 0.5 to 1.0 and bicubic
interpolation. We applied color jitter to adjust the brightness, contrast, saturation, and hue of the images. Additionally, we
included random grayscaling with a probability of 0.15, also random Gaussian blurring with a probability of 0.3 and a sigma
ranging from 0.1 to 1, and finally random equalization and solarization with a probability of 0.3. Horizontal flipping was
performed randomly. Finally, all images were normalized. During validation, the images were only resized and normalized.

We used a slightly different image augmentation pipeline for fine-tuning. Instead of performing random crops, we used
full image resizes. We keep augmentations like color jitter, random horizontal flip, and normalization, consistent with the
pretrain augmentations. We replaced the remaining transformations with random equalizing and random autocontrasting.
We also incorporated random affine augmentations with a rotation limit of 5 degrees and applied random erasing with a scale
ranging from 0.01 to 0.05 and a ratio ranging from 0.1 to 1. Validation augmentations remained the same as for pretraining.
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