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Abstract

Modelling uncertainty in Machine Learning mod-
els is essential for achieving safe and reliable pre-
dictions. Most research on uncertainty focuses
on output uncertainty (predictions), but minimal
attention is paid to uncertainty at inputs. We pro-
pose a method for propagating uncertainty in the
inputs through a Neural Network that is simulta-
neously able to estimate input, data, and model
uncertainty. Our results show that this propaga-
tion of input uncertainty results in a more sta-
ble decision boundary even under large amounts
of input noise than comparatively simple Monte
Carlo sampling. Additionally, we discuss and
demonstrate that input uncertainty, when propa-
gated through the model, results in model uncer-
tainty at the outputs. The explicit incorporation of
input uncertainty may be beneficial in situations
where the amount of input uncertainty is known,
though good datasets for this are still needed.

1. Introduction
While neural networks are state of the art for many problems
ranging from language generation to image interpretation,
their predictions are often overconfident and they have issues
estimating their own uncertainty (Valdenegro-Toro & Mori,
2022; Ovadia et al., 2019).

One often overlooked source of uncertainty is the model’s
input (Tzelepis et al., 2017), as features and pixel values
can be noisy, depending on the data source. Uncertainty
in the input is an underexplored research area (Rodrigues
et al., 2021; Hüllermeier, 2014; Depeweg et al., 2018), with
most works about uncertainty estimation being about output
uncertainty (Hüllermeier & Waegeman, 2021). Accounting
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Figure 1. Concept of Input Uncertainty in the Two Moons dataset,
increasing σ makes classification more difficult and decision
boundary unclear. Considering IU could improve model perfor-
mance.

for the uncertainty in the input can improve the final predic-
tion, as well as its uncertainty. Appendix B offers further
discussion on related work.

In this work we introduce the concept of input uncertainty,
as well as a new formulation for simultaneously estimat-
ing data uncertainty (aleatoric—AU), model uncertainty
(epistemic—EU) and input uncertainty—IU. Additionally,
we argue that propagation of IU into the model results in
epistemic uncertainty.

The contributions of this work are: (a) a novel formulation
combining AU, EU, and IU into a single model and un-
certainty estimation method, (b) a theoretically grounded
interpretation that IU is processed as EU, and (c) an experi-
mental validation of our formulation.

2. Input Uncertainty Formulation
Notation. We denote standard supervised learning datasets
as (xj , yj)

N
1 . Datasets can have IU, which is denoted as

x = {µi, σi} with i denoting input variables. Datasets can
additionally have output uncertainty, which is denoted dif-
ferently for regression and classification. For regression
y = {µo, σo}, with o denoting output variables. For classifi-
cation y = P (ŷ=c |x) ∀c ∈ {1, . . . , C}, where probabil-
ities can be obtained via sampling through the softmax func-
tion P (ŷ=c |x) ∼ softmax(zc) and zc ∼ N (µ̂o, σ̂o). A
model is a function fθ with trainable parameters θ. Ground
truth labels are denoted as y, while predicted values are ŷ.

We define the input/output uncertainty estimation problem

1



Unified Uncertainties: Combining Input, Data and Model Uncertainty into a Single Formulation

as training a model fθ where both IUs σi and output uncer-
tainties σo are considered, and related by:

ŷo = fθ(x
i) (1)

A common desideratum is that output uncertainties are cali-
brated. To denote inputs and outputs with uncertainty, we
use the notation µ ± σ, where µ is the prediction or input
value and σ is its associated uncertainty, represented by the
standard deviation.

IU Propagation. Given an input with uncertainty
x = {µi, σi}, it is possible to propagate the uncertainties
through a model fθ by using a first order Taylor approxima-
tion (Kelly, 1994):

fθ(µ
i ± σ2i) ≈ fθ(µ)± Jσ2JT (2)

Where µo = fθ(µ
i) and σo2 = Jσi2JT and the Jacobian

matrix is Jij =
∂fi
∂µj

evaluated at µi.

IU MC Sampling. An alternative way to propagate IU to
the output of a model fθ is via Monte Carlo sampling:

fθ(µ
i ± σ2i) ≈ E[fθ(x̃)]± Var[fθ(x̃)] x̃ ∼ N (µi, σ2i)

(3)
The input is modelled as Gaussian random variable x̃,
from which samples are drawn that are passed through
the model fθ. The output is an approximate Gaussian
N (fθ(x̃),Var[fθ(x̃)]). The monte carlo approximation is
computed using N samples:

E[fθ(x̃)] ≈ N−1
N∑

fθ(x̃j)

Var[fθ(x̃)] ≈ (N − 1)−1
N∑

(fθ(x̃j)− E[fθ(x̃)])2

With x̃j being the j-th sample from N (µi, σ2i). Both ap-
proaches are approximate, as there is no analytic formula-
tion for an exact propagation of uncertainty.

2.1. Uncertainty Estimation Formulation

In this section we combine IU with standard formulations
for AU and EU. For IU estimation, we assume the exis-
tence of a function propagate(µ, σ2) that propagates IU
through the model, as described in the previous section,
and epistemic(µ) corresponds to standard uncertainty
estimation methods that produce EU via sampling (e.g. MC-
Dropout (Gal & Ghahramani, 2016), MC-DropConnect
(Mobiny et al., 2021), Bayesian Neural Networks like
Flipout (Wen et al., 2018), etc) or ensembles (e.g. Deep
Ensembles (Lakshminarayanan et al., 2017)). We combine
these by first applying the EU estimation method, and then

the IU propagation method:

Sepi(µ, σ
2) = propagate(epistemic(µ), σ2)

µs = E[Sepi(µ, σ
2)]

σ2s = Var[Sepi(µ, σ
2)]

Where Sepi(µ, σ
2) represents the result of the IU propaga-

tion method, corresponding to N samples (on which ex-
pectation and variance are computed), depending on the IU
propagation method, while the EU method uses M forward
passes. Then three values can be estimated:

µo = E[µs] (Prediction)
σo

inp = Var[µs] (IU)

σo
epi = E[σ2s] (EU)

In general terms, µo is the model prediction after averaging
over the EU estimation method, σinp is the output uncer-
tainty attributed to the input, being the disagreement or
variation between the samples, and σepi is the output EU,
given by the average of the per-input-sample EUs produced
by epistemic(µ).

Depending on the task, the prediction also holds AU.

Classification. For classification with C classes, output
uncertainties (µo, σinp, σepi) are modelled as logits (values
before applying softmax), so they are C-dimensional vectors
that can be transformed into probabilities by:

pale(y |x) = softmax(µo) (AU)

pinp(y |x) = sampling softmax(µo, σinp) (IU)

pepi(y |x) = sampling softmax(µo, σepi) (EU)

Where the sampling softmax function (Valdenegro-Toro &
Mori, 2022) is defined by:

sampling softmax(µ(x), σ2(x)) = N−1
∑
j

softmax(ẑj)

with ẑj ∼ N (µ(x), σ2(x)) (4)

Where N is the number of samples used for Monte Carlo
sampling.

Regression. Regression requires small changes to the for-
mulation. To estimate AU in regression, a model with two
output heads is required, and the Gaussian negative log-
likelihood loss (Seitzer et al., 2022a) is used to train both
mean µ and variance σ2 heads.

LNLL(yj ,xj) = log σ2(xj) +
(µ(xj)− yj)

2

σ2(xj)
. (5)

The model’s forward passes now produce mean and vari-
ance, implying that epistemic(µ) now returns two val-
ues. Some adjustments are needed for the regression for-
mulation, to propagate aleatoric variances from the model
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forward passes through the epistemic and IU propagation
methods, without changes, only producing samples.

Sepi(µ, σ
2), σ2

ale = propagate(epistemic(µ), σ2)
(6)

Then the associated predictions and uncertainties for regres-
sion are:

µo, σo
ale = E[µs],E[σ2

ale] (Prediction & AU)

σo
inp = Var[µs] (IU)

σo
epi = E

[
σ2s

]
(EU)

The output aleatoric variance σo
ale is the expectation over

aleatoric uncertainty samples propagated through both
propagate() and epistemic().

2.2. Discussion

Uncertainty Interpretation. Conceptually the IU σi is part
of AU, as its source is the training data and the sensor or
device producing the original data. IU does not reduce if
more information or data is added, as it is inherent to the
data.

When propagating IU through a model, the output uncertain-
ties σo

inp and σo
epi are EUs, as they correspond to uncertainty

due to the model’s equations, and it is combined with an EU
estimation method. This is a novel view as we argue that
input AU is transformed into output EU via our proposed
uncertainty formulation. The predictive uncertainty can be
conceptually combined as:

Predictive Uncertainty = Aleatoric + Epistemic + Input (7)

Computational Costs. Methods for IU estimation have
increased computational requirements during inference. For
IU propagation using a Taylor approximation, the cost is
O(M), as only EU estimation contribute to increased costs,
but sampling IU estimation has cost O(NM), due to N
samples for IU propagation, and each of them needs M
samples/ensembles for EU estimation. This makes sampling
infeasible on large models and datasets, while using the
Taylor approximation incurs minimal additional cost.

3. Experiments
Experimental Setup. For experimentation we use the two
moons dataset because it is simple, we can add noise to input
data points to simulate uncertainty, and it allows a clear
visualization of uncertain regions and the decision boundary.
We train a four layer multi-layer perceptron using ReLU
activations, the two last layers use some form of uncertainty
estimation method as described below. Models are trained
with the Adam optimizer using the cross-entropy loss.

Gaussian distributed noise with µ = 0 and σ = 0.1 is added
to the training set, and for IU propagation evaluation, we
use increasing levels of IU: σ ∈ {0.25, 0.5, 1.0}.

EU Methods. We evaluate a standard neural network (with-
out EU methods), MC-Dropout (Gal & Ghahramani, 2016)
with drop probability p = 0.2, MC-DropConnect (Mobiny
et al., 2021) with drop probability p = 0.05, Ensembles
(Lakshminarayanan et al., 2017) with M = 5 ensemble
members, and Flipout (Wen et al., 2018). Stochastic meth-
ods use M = 20 forward passes.

Expectations. Validating IU propagation is difficult as
there is no ground truth label for uncertainties, and novelty
in formulations require a different evaluation approach. To
evaluate the quality of IU propagation, we train a model
with a certain level of IU on training data, and test model
predictions and associated uncertainties with increasing lev-
els of IU, expecting that the model will output increasing
uncertainties, in particular σo

inp should increase together with
the IU, while AUs should remain approximately constant.
EU should also increase but not at the same level as σo

inp.

3.1. Classification on Two Moons Dataset with IU

Figures 2 and 3 demonstrate predicted AU, EU, and IU un-
der different amounts of IU using respectively the Monte
Carlo Sampling approach and the Uncertainty Propaga-
tion approach across different methods for quantifying EU.
The most salient difference between these two approaches,
which seems consistent regardless of the method for quanti-
fying EU, is that the Propagation approach maintains a clear
decision boundary under increased input noise, while the
Monte Carlo Sampling approach shows a decision boundary
that becomes noisy and loses shape under high amounts of
input noise. This suggests propagation of input uncertainty
may affect the decision boundary.

The second difference is that under the Uncertainty Propaga-
tion approach, the predicted IU changes very little, but the
predicted EU increases. This effect also exists in the Monte
Carlo approach, but is less pronounced. The propagation of
IU leads to an increase in EU as it offers the necessary infor-
mation so that a better decision boundary may be learned,
but this does add complexity to the learning problem.

Overall, the Monte Carlo Sampling shows that the increase
in IU adds noise to all predicted uncertainties. However,
for the Uncertainty Propagation, only the EU changes. This
shows that the Uncertainty Propagation approach allows for
a more consistent disentanglement of the different kinds of
uncertainty, and allows the preservation of decision bound-
aries even under large amounts of input noise.

The main drawback of the Uncertainty Propagation ap-
proach is that it fails to predict an increase in IU even though
the ground truth IU does increase. The Sampling IU does
predict an increase in IU.

The different methods for predicting EU exhibit similar be-
haviour, showing that IU has a minor role in direct epistemic
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Figure 2. Results on the Two Moons dataset with Monte Carlo Sampling IU (Using Eq 3). As the IU increases, the learned decision
boundary loses shape and becomes noisy. Note that each value of σ produces three plot columns for each output uncertainty.
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Figure 3. Results on the Two Moons dataset with Propagation IU (Using Eq 2). As the IU increases, the predicted EU increases. The other
predicted uncertainties remain roughly the same. Note that each value of σ produces three plot columns for each output uncertainty.

uncertainty, clearly being reflected via the method used to
propagate IU through the model. Appendix C shows that
the findings for classification also hold for regression.

4. Conclusions and Future Work
In this work we proposed a new formulation for unified
uncertainties considering aleatoric, epistemic, and input
uncertainty. This allows for input uncertainty to be explicitly
modelled in a neural network.

The results show that the proposed Uncertainty Propagation
method results in better uncertainty estimates and more
consistent decision boundaries than a comparatively simple
baseline method of Monte Carlo Sampling from the input
uncertainty. Input uncertainty is often trivialised as noise
that can just be learned with sufficient samples. Our work
shows that knowledge about the input uncertainty may be

propagated effectively in a Neural Network resulting in more
desirable predictive behaviour of the model. Additionally,
we show a new insight that this aleatoric input uncertainty
becomes epistemic uncertainty in the output if propagated
through the model.

The experiments with toy data and the underlying theory
show that this is a promising new avenue for further re-
search on uncertainty quantification. To really capitalise on
input uncertainty these methods should be applied to cases
where input uncertainty may be estimated from prior knowl-
edge. Depth-sensing cameras such as Kinect for example
are known to have a higher depth-variance on object fur-
ther away, and many sensors are manufactured with known
amounts of (im)precision in their observation. Collecting
this kind of information in datasets is the next step in explor-
ing the viability of propagating input uncertainty through a
Neural Network.
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Hüllermeier, E. Quantifying aleatoric and epistemic un-
certainty in machine learning: Are conditional entropy
and mutual information appropriate measures? In Uncer-
tainty in Artificial Intelligence, pp. 2282–2292. PMLR,
2023.

Wright, W. Neural network regression with input uncer-
tainty. In Neural Networks for Signal Processing VIII.
Proceedings of the 1998 IEEE Signal Processing Soci-
ety Workshop (Cat. No. 98TH8378), pp. 284–293. IEEE,
1998.

Wright, W., Ramage, G., Cornford, D., and Nabney, I. T.
Neural network modelling with input uncertainty: Theory
and application. Journal of VLSI signal processing sys-
tems for signal, image and video technology, 26:169–188,
2000.

5

https://openreview.net/forum?id=aPOpXlnV1T
https://openreview.net/forum?id=aPOpXlnV1T


Unified Uncertainties: Combining Input, Data and Model Uncertainty into a Single Formulation

A. Broader Impact Statement
Machine learning models and systems using them are gener-
ally not robust to different types of corruptions in the input
data, and we believe that explicitly modelling uncertainty
and noise in the input data can lead to more robust models,
as more information is provided to make a prediction.

But as with any uncertainty estimation method, there are
no guarantees about correctness of predictions and their
associated uncertainties, so these methods should be used
with care and extensive validation.

Some limitations of our work are: we experiment only on toy
datasets to understand how methods are actually working,
and real-world performance is left for future work. We only
test with input Gaussian noise, while real-world corruptions
might follow distributions that considerably deviate from
Gaussian noise.

B. Related Work
Most existing research on Uncertainty Quantification fo-
cuses on AU (Seitzer et al., 2022b), EU (Gal & Ghahramani,
2016; Lakshminarayanan et al., 2017; Wen et al., 2018), or
both (Valdenegro-Toro & Mori, 2022; Wimmer et al., 2023),
but very little work focuses on IU.

In the typical BNN-based setup AU is generally estimated
by a predicted variance for regression (Seitzer et al., 2022b),
or by relying on the softmax function for classification (Guo
et al., 2017). The desideratum in AU estimation is to have
the predicted probability of a prediction match the probabil-
ity of it being correct (accuracy). This is challenging under
heteroscedastic aleatoric uncertainty, where the probability
of being correct may change between different samples.

EU is modelled by uncertainty in the parameters. In true
Bayesian Neural Networks each parameter in the Neural
Network is represented with an arbitrary probability distri-
bution. Learning this is computationally infeasible, so a
variety of approximation methods have been proposed with
varying estimation quality and practical consequences. MC-
Dropout (Gal & Ghahramani, 2016) and MC-Dropconnect
(Mobiny et al., 2021) require minimal changes to the model
architecture, and do not make any changes to the training
process, but are M times as computationally expensive dur-
ing inference. Deep Ensembles (Lakshminarayanan et al.,
2017) train N models on the same data with different ran-
dom initialization. This puts no requirements on the model
architecture, and does not require as many forward passes
to get good results, but makes training N times more expen-
sive and requires more memory to store the models. Flipout
(Wen et al., 2018) requires changes to the architecture, but
does actually learn a distribution for the parameters.

Research on IU is limited and has not been connected with

modern UQ literature. Matsuoka (1992) and Sietsma & Dow
(1991) explored injecting uncertainty at the inputs as a form
of regularization, but did not consider propagating IU to
achieve better estimated uncertainties. Their findings input
uncertainty regularizes can also be seen in Figure 2. Wright
et al. (2000) and Wright (1998) does propagate IU through
a Bayesian Neural Network for regression with the Laplace
approximation. They show that the predicted uncertainty
increases corresponding with the input uncertainty, as is also
shown in our results.

Bócsi & Csató (2013) proposes using the Hessian to correct
biases when integrating input noise, corresponding to IU.

C. Regression with IU on Toy Dataset
We additionally produce results on a toy regression problem,
to test the equivalency of the regression formulation. We
use a synthetic function corrupted with noise, defined by:

f(x) = x sin(x) + ϵ1 + ϵ2x (8)

With ϵ1 ∼ N (0, 0.32) and ϵ2 ∼ N (0, 0.32). The use of
both noise terms is to introduce homoscedastic (e1) and
heteroscedastic (ϵ2) aleatoric uncertainty to the data. No
noise is added to the input variable x.

We generate N = 1000 equally spaced samples in x ∈
[0, 10.0] for training the model, and additionally generate
N = 200 samples in x ∈ [10, 12] as out of distribution
samples, to test behavior of input and epistemic uncertainty
in this setting.

Input uncertainty is produced by corrupting the input with
Gaussian noise with µ0 and increasing levels of noise fol-
lowing σ{0.25, 0.5, 1.0}.

Results for both sampling and propagation are presented
in Figures 4 and 5 correspondingly. These results show
similar behavior as with classification on two moons, with
Monte Carlo sampling input uncertainty behaving as ex-
pected, while input uncertainty propagation turns input un-
certainty into epistemic uncertainty, which is unexpected
but in line with classification experiments.
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Figure 4. Results on the Toy Regression example with Monte Carlo Sampling IU. As the IU increases, predicted IU increases accordingly,
without affecting EU. Note that each value of σ produces three plot columns for each output uncertainty type (Aleatoric, Epistemic, Input).
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Figure 5. Results on the Toy Regression example with Propagation IU. As the IU increases, mostly predicted EU increases, while predicted
IU increases only slightly. Note that each value of σ produces three plot columns for each output uncertainty type (Aleatoric, Epistemic,
Input).
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