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Abstract
The hybridization of ML techniques with heuris-
tics approaches is promising for difficult prob-
lems. This paper aimed to explore this hybridiza-
tion in an NP-Hard Problem with a proposed ML-
HBRKGA, a hybrid approach combining a Biased
Random-Key Genetic Algorithm (BRKGA) with
Q-learning and a Random Forest Regressor with
Local Branching to solve the Knapsack Problem
with Forfeits (KPF). The analysis shows that the
approach is competitive with the existing litera-
ture.

1. Introduction
Managing conflicting or mutually exclusive choices poses a
significant challenge in many optimization scenarios. Dis-
junctive constraints or conflicts have been incorporated into
combinatorial optimization problems, enriching classical
problems like the Minimum Spanning Tree (Carrabs et al.,
2021), Maximum Flow (Galbiati, 2011), Knapsack (Bet-
tinelli et al., 2017; Fügenschuh et al., 2019; Hifi & Otmani,
2012), and Bin Packing (Epstein & Levin, 2008) Problems
to address this. This article concentrates on the Knapsack
Problem with Forfeits (KPF) (Cerulli et al., 2020), a vari-
ation of the 0-1 Knapsack Problem that introduces ”soft”
conflict constraints, also called forfeits, which impose a
penalty when items from a forfeit pair, are selected together
to compose a solution. This change is advantageous when
strictly avoiding conflicts leads to infeasible solutions or the
cost of preventing conflicts is too high.

The KPF has diverse applications across various fields, in-
cluding workforce assignment, employee shift scheduling,
healthcare, and logistics. For instance, in workforce as-
signment, specific machines might need to be operated by
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certain workers, while in shift scheduling, some shifts incur
additional costs when assigned together. In healthcare, opti-
mizing food and drug intake to avoid adverse interactions
is crucial, and in logistics, ensuring the safe transportation
of items requiring special treatment is necessary. These
examples highlight the practical importance and flexibility
of addressing forfeits in practice (Capobianco et al., 2022).

This paper applies an approach called ML-HBRKGA to solve
the Knapsack Problem with Forfeits (KPF) using a regres-
sion task. This methodology integrates a Biased Random-
Key Genetic Algorithm (BRKGA), a Local Branching tech-
nique, Q-learning as a reinforcement learning algorithm,
and a Random Forest Regressor for the regression task. The
ML-HBRKGA approach effectively reduces the solution gap
and improves computational efficiency compared to existing
methods, offering suitable solutions for the KPF.

The paper is organized as follows: Section 2 reviews related
literature, and Section 3 provides a detailed description of
KPF and a mixed integer programming formulation. Sec-
tion 4 outlines the proposed method and its components.
Section 5 presents the computational experiments and their
results. Finally, Section 6 concludes the paper and discusses
potential future work.

2. Related Literature
Using the Scopus database, the literature review explores
the Knapsack Problem with Forfeits (KPF) by focusing on
peer-reviewed articles. The initial work on KPF by (Cerulli
et al., 2020) introduced a Mixed Integer Programming (MIP)
formulation and two heuristics: GreedyForfeits and Carou-
selForfeits. GreedyForfeits sequentially inserts items into
the knapsack based on their benefit-to-weight ratio, while
CarouselForfeits, inspired by the Carousel Greedy paradigm
(Cerrone et al., 2017), iteratively improves the solution by
re-evaluating early greedy choices.

Subsequent research introduced ILSForfeits (Moura et al.,
2021), an Iterated Local Search-based heuristic, and GA-
CG (Capobianco et al., 2022), a hybrid algorithm com-
bining a Genetic Algorithm with Carousel Greedy, which
demonstrated superior performance in benchmark instances.
The success of GA-CG led to the exploration of genetic
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algorithms and hybrid methods, inspiring the present work,
which will be detailed in the following sections.

3. Problem Description
To formally define the problem, we consider the formulation
by (Cerulli et al., 2020). Assume a set of items I with n
elements. Each item i ∈ I is characterized by a profit pi > 0
and a weight wi > 0. The total weight of selected items
must not exceed a capacity limit b > 0. Additionally, we
define a set K containing |K| forfeit pairs, where including
both items of a pair incurs a penalty.

Each element in k = {i, j} ∈ K consists of a pair of
elements, where i, j ∈ I , with a corresponding forfeit cost
dk > 0, k = 1, 2, ...l. So, the Mixed Integer Programming
model (MIP) for KPF can be described as:

max
∑
i∈I

pixi −
∑
k∈K

dkvk∑
i∈I

wixi ≤ b

xi + xj − vk ≤ 1 ∀k = {i, j} ∈ K
xi ∈ {0, 1} ∀i ∈ I

0 ≤ vk ≤ 1 ∀k ∈ K

(1)

(2)
(3)
(4)

The MIP includes binary variables xi, representing whether
each item i from set I is included in the knapsack. A vari-
able vk is also introduced to indicate if the forfeit cost dk
associated with a forfeit pair must be paid. Constraint (1)
guarantees that the total weight of selected items does not
exceed the knapsack’s maximum capacity. Constraints (2)
implement conditions on the variables x and v, specifying
that vk must be set to 1 when both items k = {i, j} are
selected. The objective function focuses on maximizing
profit while minimizing forfeit costs.

4. Methodology
This section introduces the ML-HBRKGA method, which
combines Machine Learning Algorithms with a Hybrid Bi-
ased Random-Key Genetic Algorithm to address the KPF.
The ML-HBRKGA includes several components: a construc-
tive heuristic for generating the initial population, local
search during the decoding phase, a Q-learning algorithm
for deciding when to apply local search, and a Local Branch-
ing technique to enhance solution quality with a regression
task that uses a Random Forest (RF). The workflow of the
ML-HBRKGA method is illustrated in Figure 1, with de-
tailed explanations of each component in the subsequent
subsections.

Figure 1. ML-HBRKGA Flowchart

4.1. BRKGA

At the core of our approach lies the Biased Random Key Ge-
netic Algorithm (BRKGA), introduced by (Gonçalves & Re-
sende, 2011). Unlike its predecessor, RKGA (Bean, 1994),
BRKGA offers a unique parent selection for crossover. Op-
erating with real-valued chromosomes within the range
[0,1], BRKGA employs problem-specific decoders to trans-
form these values into solutions and compute their objective
functions. The algorithm divides solutions into elite and
non-elite categories, with a dedicated elitism procedure cre-
ating a separate population. New members are generated
through crossover (mixing elite and non-elite solutions) and
mutation (introducing random changes to specific keys).

BRKGA’s bias prefers elite solutions during genetic infor-
mation transmission associated with crossover, confirming
its effectiveness in solving many combinatorial optimization
problems. These include Facility Location Problems (Souto
et al., 2021; Morais et al., 2022), Traveling Salesman Prob-
lem Variants (Snyder & Daskin, 2006; Samanlioglu et al.,
2008), Job Shop Scheduling (Brandao et al., 2015; Brandão
et al., 2017) and many others.

An essential phase of BRKGA is the decoder phase. The
decoder algorithm takes a chromosome of random keys as
input and computes the fitness of the obtained solution. In
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the implemented decoder for the KPF, a binary vector repre-
sents a solution, which is decoded by sorting the keys and
selecting items until the knapsack capacity is reached. The
algorithm then extracts the state and action of the current so-
lution from the trained Q-table by the Q-learning algorithm
to decide whether to apply the Local Search or not.

4.2. Constructive Heuristic

The Constructive Heuristic is crucial in creating the initial
population for BRKGA. In this article, we utilize a Semi-
Greedy approach called Semi-GreedyForfeits, inspired by
the GreedyForfeits method introduced by (Cerulli et al.,
2020).

The adaptation involves selecting items from the subset
Xiter = {i|wi ≤ bres ∧ i ∈ I \ S}, which contains items
that can still be added to the solution set S. This is done by
looping through a Restricted Candidate List (RCL):

RCL = {i ∈ I|hmin ≤ hi ≤ hmax + α(hmin − hmax)},
(5)

where h is the cost-benefit function and α determines the
level of greediness or randomness in the algorithm’s item
selection process.

4.3. Local Search

In summary, the local search algorithm explores a solution
neighborhood to improve upon the current solution itera-
tively. It focuses on item exchange within the Knapsack
Problem with Forfeits (KPF), where S̄ represents items not
included in the current solution S. By swapping items be-
tween S̄ and S, the algorithm evaluates if such exchanges
enhance the solution’s cost. To mitigate computational costs
as the instance size increases, we use an efficient solution
evaluation process denoted as δ:

δij = βj − βi + dij , ∀i ∈ S, j ∈ S̄ (6)

βm = pm −
∑
j∈S

dmj , ∀m ∈ I (7)

In the worst-case scenario, evaluating the solution has a time
complexity of O(1). Using this approach reduces the local
search worst-case complexity from O(n4) to O(n2).

4.4. Machine Learning Stage: Q-Learning and Random
Forest

In Machine Learning, Reinforcement Learning (RL) in-
volves an agent interacting with an environment by taking
actions, receiving rewards, and transitioning to new states to

find optimal solutions. This approach models problems as
sequential decision-making processes using the Markov De-
cision Process (MDP) framework (Mazyavkina et al., 2021;
Sutton & Barto, 2018; Chaves & Lorena, 2021; Bellman,
1957).

In the Q-learning process, a Q-Table is iteratively updated
using an epsilon-greedy policy to guide the agent’s actions,
aiming to maximize long-term cumulative rewards (Watkins
& Dayan, 1992; Watkins, 1989). In the context of KPF, the
Q-learning algorithm is integrated into the BRKGA decoder
phase to decide whether to apply local search based on
the gap value, calculated as gap = 1 − (Sbest/Scurrent).
Here, Sbest is the best solution, and Scurrent is the current
solution. The Q-Table is initialized with all values set to 0,
indicating the starting point and the decision to apply local
search. The state is defined by the difference between the
current solution cost and the cost of the best solution found.
The action is determined by selecting the maximum value
from the trained Q-table that corresponds to the given state

Another crucial step in the implemented learning process in
Local Branching (LB) was inspired in the works (Fischetti
& Lodi, 2003; Liu et al., 2021). The Local Branching (LB)
technique serves to refine existing feasible solutions. Like
the local search process, LB incorporates linear inequal-
ities into the model, thereby defining neighborhoods for
exploration (Gonzalez et al., 2016; Gonzalez & Brandão,
2018).

Considering the KPF, let us examine a solution s ∈ P ,
where P delineates the polyhedron defined by Constraints
(1) - (4). Implementing this approach involves incorporating
the following LB constraint:

∑
i∈I|x̄i=0

xi +
∑

i∈I|x̄i=1

(1− xi) ≤ ∆, (8)

where ∆ is a given positive integer, indicating the number
of variables xi, i ∈ I , which can change their value from
one to zero and vice versa.

In the learning phase, a Random Forest (Wang & Jin, 2018;
Liaw et al., 2002) was applied to predict a precise neighbor-
hood size for each instance of the KPF.

5. Computational Experiments
This section contains two subsections. The first one sum-
marizes the implementation details and tuning parameters,
while the remaining examines the key findings related to ML-
HBRKGA, providing insightful comparisons with existing
literature.
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5.1. Implementation Details and Parameters Tuning

The proposed method, ML-HBRKGA, was implemented in
Python using the Python interpreter version 3.10.12 and
IBM CPLEX version 22.1.1. The experiments were exe-
cuted three times for each instance on an AMD Ryzen 5
4600G with a Radeon Graphics processor running at 4.30
GHz and 16 GB RAM.

Before experimentation, we first tuned the parameters for
ML-HBRKGA using iRace (López-Ibáñez et al., 2016) to
optimize the Hybrid BRKGA (BRKGA + LB) settings, in-
cluding the α value for the Restricted Candidate List (RCL)
in Semi-GreedyForfeits, and BRKGA parameters: popula-
tion size (p), elite population size (pe) and mutation ratio
(pm). In the second phase, we used Grid-Search to fine-
tune Q-learning parameters such as learning rate (κ), num-
ber of training episodes (nep), maximum Q-learning steps
(maxsteps), discount rate (γ), decay rate (r), and explo-
ration/exploitation probabilities (ϵmin = 0.01, ϵmax = 1.0).
These parameters were finalized after extensive testing, and
the algorithm was set to stop after 180 seconds.

For the experiments, we used the ”O” (Original) set of ten
instances described in (Cerulli et al., 2020), which included
500, 700, 800, or 1000 items (n = |I|). Each set also had
corresponding forfeit pairs (l = 6n) and capacity (b = 3n).
The weights, profits, and forfeit costs for each item were
randomly generated from the intervals [3, 20], [5, 25], and
[2, 15], respectively. It’s also significant to mention that
the gap was calculated in comparison with the best solution
found using CPLEX with a time limit of 7200s, as described
in (Capobianco et al., 2022).

5.2. ML-HBRKGA versus literature

After tuning the algorithm, experiments were conducted
to compare the results of the proposed methodology with
those of the literature. An important metric used for
this comparison was the solution gap, defined as (1 −
(Solheuristic/SolCPLEX))× 100%, where Solheuristic is
the cost of the heuristic solution, and SolCPLEX is the cost
of the best solution obtained through IBM CPLEX solver.

The proposed methodology was compared with leading KPF
approaches, including CarouselForfeits and GA-CG. GA-
CG was selected over ILSForfeits since it performs better,
and because ILSForfeits did not report solution values for
all instance classes, it was excluded from the analysis.

Table 1 indicates in bold that the mean gap of ML-HBRKGA
is superior to other methods in the literature, and the execu-
tion time follows the same tendency. Importantly, even as
the number of items increases, ML-HBRKGA consistently
finds high-quality solutions with a gap of less than 1%.

The results showed that the proposed ML-HBRKGA is a

Table 1. Mean GAP and time for “O” set of instances

NUMBER OF ITEMS

METRICS METHODS 500 700 800 1000

MEAN GAP(%)

CAROUSELFORFEITS 4.39 5.18 4.61 23.03
GA-CG 1.53 1.70 1.60 1.82

ML-HBRKGA 0.02 0.20 0.52 0.47

MEAN TIME(S)

CAROUSELFORFEITS 1.35 3.61 5.53 5.53
GA-CG 163.90 506.22 798.20 1592.94

ML-HBRKGA 177.37 216.51 233.06 265,63

viable approach to solve the KPF since, in the worst case,
the method was able to find solutions that were at most
2.32% away from the best known lower bound at a time
close to 3 minutes. From an application point of view,
finding better solutions quickly and with a smaller distance
from the optimal solution seems promising for practical
situations.

6. Conclusions and Future Works
The paper addresses the Knapsack Problem with Forfeits
(KPF), a modified version of the classic 0-1 Knapsack Prob-
lem. In KPF, the complexity arises from introducing forfeit
pairs, called soft conflicts, which negatively impact the
solution’s total cost. To solve this NP-hard problem, we pro-
pose ML-HBRKGA. This innovative approach integrates
Q-Learning with a Hybrid Biased Random-Key Genetic
Algorithm and Random Forest to predict the neighborhood
size of Local Branching constraints. Our method proposes
contributing new perspectives and solutions to this challeng-
ing problem.

Our implementation integrates a Hybrid Biased Random-
Key Genetic Algorithm (HBRKGA) with Q-learning, featur-
ing a ”smart” decoder trained with Q-learning to determine
the application of a local search algorithm dynamically.
Additionally, we incorporated a final Local Branching tech-
nique, coupled with Random Forest, to predict the optimal
neighborhood size for each instance and enhance the solu-
tion’s feasibility.

The experimental findings highlight the efficacy of the ML-
HBRKGA approach in solving the KPF and generating high-
quality solutions. Analysis of the solution gaps indicates that
the ML-HBRKGA method generates solutions with gaps
smaller than 1%, emphasizing its reliability and efficiency.

At last, the Knapsack Problem with Forfeits using ML-
HBRKGA is just the beginning of the research. While these
initial findings are promising. Further investigation into the
application of Machine Learning techniques, both exact and
heuristic, is essential. This approach is not limited to KPF
but extends to other variations of the knapsack problem,
including those with hard item conflicts and sets of soft
conflicts. These explorations could yield valuable advance-
ments in the field.
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