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Abstract
Detecting anomalous behavior in dynamic net-
works remains a constant challenge. This prob-
lem is further exacerbated when the underlying
topology of these networks is affected by indi-
vidual highly-dimensional node attributes. We
address this issue by tracking a network’s mod-
ularity as a proxy of its community structure.
We leverage Graph Neural Networks (GNNs)
to estimate each snapshot’s modularity. GNNs
can account for both network structure and high-
dimensional node attributes, providing a compre-
hensive approach for estimating network statis-
tics. Our method is validated through simulations
that demonstrate its ability to detect changes in
highly-attributed networks by analyzing shifts in
modularity. Moreover, we find our method is
able to detect a real-world event within the #Iran
Twitter reply network, where each node has high-
dimensional textual attributes. We additionally
make our code available on Github 1.

1. Introduction
A network or graph is a collection of interconnected items,
called nodes or vertices, found in areas like brain networks
(Budzinski et al., 2022), as well as in human-engineered con-
texts such as computer networks (Mahmood et al., 2015).
Network science studies these structures, revealing their
benefits in applications including social network mining
(Tiukhova et al., 2022) and combatting human trafficking
(Rabbany et al., 2018). As the field evolved, subfields like
network monitoring emerged, focusing on changes in net-
work behaviour over time. Methods for detecting changes
include statistical process monitoring and anomaly detection
in time series used in engineering, manufacturing, and fraud
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detection (Tsung et al., 2008; Ramrez & Ramrez, 2018; Mac-
Gregor & Kourti, 1995). Network monitoring often com-
bines these methods, such as using statistical control charts
or deep learning to detect anomalies in dynamic networks
(Malinovskaya & Otto, 2021). Another subfield studies at-
tributed networks, where nodes hold important information.
Statistical inference methods are proficient at estimating
parameters of the graph generation process but are largely
limited by restrictive and unrealistic assumptions (Newman
& Clauset, 2016). On the other hand, GNNs have achieved
state-of-the-art performance in classification, regression,
and generative tasks over attributed and unattributed net-
works without such assumptions (Dwivedi et al., 2020).
Most network monitoring techniques ignore network at-
tributes, focusing only on the network structure itself. Some
works consider attributes but use simpler generalized lin-
ear models, limiting their capacity (Ebrahimi et al., 2021a;
Gahrooei & Paynabar, 2018). This study presents a method
for monitoring networks with many attributes by tracking
the graph’s community structure. Communities are groups
of similar, frequently interacting individuals. We find these
groups by maximizing network modularity using a GNN,
leveraging structural properties and high-dimensional at-
tributes. When monitoring a time series of graphs, we detect
structural changes when modularity changes significantly.
Through simulations, we demonstrate that our method can
detect a variety of changes in highly attributed networks.
Additionally, we showcase our methods’ practicality on a
real world Twitter network, where the node attributes are
derived from user tweets. We relegate the related work sec-
tion to App. B, where we note to the best of our knowledge
this work is the first to study anomaly detection on highly-
attributed dynamic graphs, specifically those with textual
attributes.

2. Background
2.1. Dynamic Networks

A dynamic network can be described as an ordered se-
quence of time varying graphs G(T ) = {G1, ..., GT } over
some timeframe T = {1, ..., T}. Each of these graphs
may be independent, but most often they exhibit temporal
dependence. We refer to these instances G1, G2, ..., GT

as network snapshots. Each snapshot contains a set of
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nodes, V(t) = {1, 2, ..., nt}, edges E(t) = {eu,v(t) :
u, v ∈ V(t), t ∈ T }, and a set of s-dimensional attributes
X (t) = {xu(t) : u ∈ V(t), t ∈ T }. It is important
to note that given our definition of a dynamic network,
the set of edges and nodes are expected to change be-
tween snapshots. Additionally, we define the neighbor-
hood of first-degree connections of a node u at time t as
Nu(t) = {v : eu,v(t) ∈ E(T )} at timestamp t. In this
work, we encode each network snapshot using an adjacency
matrix, denoted At. The matrix can either have binary en-
tries Auv,t = eu,v(t) ∈ 0, 1 or real-valued edge weights
Auv,t = eu,v(t) ∈ R.

2.2. Deep Modularity Networks

Traditionally, graph communities are obtained using self-
supervised learning combined with k-means clustering on
the derived node representations. However, these methods
can be unreliable depending on the graph’s size and sparsity
(Xia et al., 2022). To address this, it is effective to directly
optimize for a statistic that measures community structure.
For example, modularity which measures the difference
between the observed number of intra-cluster edges and
what would be expected in a randomly generated graph.

Q =
1

2w

∑
uv

[
Auv −

dudv
2w

]
δcu,cv (1)

where δcu,cv is the Kronecker delta, w indicates the total
number of edges in the graph, du = |Nu| is the degree
of node u, and cu indicates the community assignment for
node u. Unfortunately, the computation of the modular-
ity gradient is intractable, making spectral modularity, a
convenient alternative (Newman, 2006):

Q =
1

2w
Tr(C⊤BC) (2)

where C ∈ {0, 1}n×k is a community assignment matrix, k
is the number of communities, and B = A− dd⊤

2w with d ∈
Rn being the degree vector. Traditionally, one can maximize
the optimal modularity by choosing the assignment matrix C
to equal the top k eigenvectors of B, but such a derivation is
agnostic to node attributes. Recently, Tsitsulin et al. (2023)
showed that a GNN can be used to directly optimize spectral
modularity and as a byproduct generate cluster assignments
which can account for anode ttributes. Deep Modularity
Networks (DMoN), achieve this by using a GNN to generate,
a modified version of the community affiliation matrix, C ∈
R(0,1)n×k

, in spectral modularity:

C = softmax(GNN(Ã,X )) (3)

where the GNN, usually a graph convolutional network
(Kipf & Welling, 2017), takes in the degree normalized
adjacency matrix, Ã = D

−1
2 (A)D

−1
2 . Given this, DMoN

is able to directly optimize spectral modularity, through
traditional gradient optimization, yielding a solution that
accounts for both graph structure and attributes.

2.3. Methodology

Since our goal is to identify changes in highly attributed
dynamic graphs, we can optimize community assignments
using DMoN and directly track the associated modular-
ity metric. Other than introducing DMoN, Tsitsulin et al.
(2023) also introduced the collapse regularizer (CR) that pe-
nalizes trivial solutions that arise when optimizing spectral
modularity:

CR =

√
k

n

∣∣∣∣∣
∣∣∣∣∣ColSum(C)

∣∣∣∣∣
∣∣∣∣∣
2

− 1. (4)

For example, this regularization penalizes the case for which
all k communities collapse into a single one by taking its
maximum value at such a solution. While this regularizer
provides stable solutions for cases when the model tries to
collapse the clusters onto as single community, it fails to
account for the trivial solution of assigning equal weight to
all clusters for each node. We instead propose the square
root collapse optimizer (SRCO) to address these limitations:

SRCO =
1√
n

∣∣∣∣∣
∣∣∣∣∣ColSum(

√
C)

∣∣∣∣∣
∣∣∣∣∣
2

− 1. (5)

To discourage the model from collapsing onto homogeneous
assignments, we take the element-wise square root of the
community assignment matrix before applying the column
sum. A simple demonstration of the effects of our procedure
is shown in App. C. Given this, our full model can be fit
end-to-end with the following cost function:

LDMoN = − 1

2w
Tr(C⊤BC)︸ ︷︷ ︸

Modularity Loss

+
1√
n

∣∣∣∣∣
∣∣∣∣∣ColSum(

√
C)

∣∣∣∣∣
∣∣∣∣∣
2

− 1︸ ︷︷ ︸
Regularizer

. (6)

We use statistical process monitoring (SPM), a form of
anomaly detection to monitor change in modularity. In gen-
eral, SPM involves modeling a system’s usual behavior and
identifying abnormalities by prospectively tracking a key
statistic, St, in our case Qt, the estimated modularity at
a snapshot t. Monitoring occurs in two phases: Phase I
sets control limits based on baseline behavior from sam-
pled statistics, while Phase II monitors new values, flagging
anomalies if they fall outside these limits. Control charts
plot these limits together with a time series of observations.
Different control charts detect various changes, including
Shewhart, cumulative sum (CUSUM), and exponentially
weighted moving average (EWMA) charts. EWMA charts
are favored for detecting gradual and sustained changes by
modeling the exponentially weighted moving average, Zt,
of St:

Zt = αSt + (1− α)Zt−1 (7)

where 0 < α < 1 is a smoothing constant, with Z0 often
set as the estimated mean µ̂ = S̄. Phase I data determines
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Change Type Change Detection Percentage Conditional Expected Delay Average Percentage Over Threshold
Community Splitting 1.0 1.0 1.0
Community Merging 1.0 1.0 1.0

New Community 1.0 1.0 1.0
Attribute Change 1.0 23.38 0.44

Table 1. Performance summaries across N= 100 replications of the community splitting change

control limits:

µ̂± 3σ̂

√
α

2− α
[1− (1− α)2t] (8)

with σ̂ being the estimated standard deviation of St. The
smoothing parameter α is crucial for sensitivity; values
closer to 1 emphasize recent observations, affecting detec-
tion rates. An α of 0.2 is commonly used to balance gradual
change detection and limit false alarms (Lucas & Saccucci).
We note that we directly train our DMoN model on Phase I
snapshots and reserve Phase II purely for evaluation. Our
full procedure is visualized and further described in App. D

3. Experiments
3.1. Data Generation

We evaluate the performance of the proposed methodology
with simulated experiments and synthetic data. Using the
data generation technique from Tsitsulin et al. (2022), we
create data resembling real-world attributed graphs. This
involves two steps: graph construction and attribute gener-
ation. First, we construct an initial graph using a degree-
corrected stochastic block model (DCSBM) (Karrer & New-
man, 2011). The DCSBM models each edge weight via a
Poisson distribution, with a mean depending on the nodes’
community memberships and their propensity to connect.
The probability mass function for the model is:

P (A|θ,Λ, c) =
∏
u<v

1

Auv!
e−λcu,cv θuθv (λcu,cvθuθv)

Auv

×
∏
u

1

(Auv/2)!
e−λcu,cuθ2u/2(λcu,cuθ

2
u/2)

Auv/2

(9)

Here, θ is the degree propensity vector, with θu being the
degree propensity for node u, proportional to its expected
degree. To ensure identifiability, the added normalization
constraint

∑
u θuδcu,r = 1 must be applied. Λ is the k × k

community propensity matrix, where an entry λr,s indi-
cates the edge propensity between communities r and s.
Here c is the community assignment vector, with an entry
cu ∈ {1, 2, ..., n} indicating the community assignment of
node u. Node attribute information is generated from cluster-
specific multivariate normal distributions, with cluster cen-
ters generated using a Gaussian mixture model. For each of
the s node attributes, we sample their attribute cluster cen-
ters from a k-dimensional multivariate Gaussian distribution
with mean µ = 0 and covariance matrix Σ = 3×Ik×k. Us-
ing the sampled cluster centers µc, we then sample the node

attributes from an s-dimensional multivariate Gaussian dis-
tribution with covariance equal to the identity matrix. The
simulation design includes 50 "in control" graphs for Phase
I. After injecting a change point, 50 "out of control" graphs
are monitored in Phase II. Each graph consists of n = 1, 000
nodes in one of k = 4 equally sized communities. Node
propensities, θu, are generated using a uniform power law
between 22 and 26. The intra-community propensity to
connect is λs,s = 18, and the inter-community propensity
is λr,s = 2 for r, s ∈ {1, 2, ..., k}. Each node’s attributes
(s = 64) are sampled from their respective multivariate
Gaussian distribution with mean µc and covariance matrix
Is,s. This framework describes a single simulation run,
we reapeat N = 100 times. Performance is evaluated us-
ing three metrics: change detection percentage, conditional
expected delay, and average percentage of observations ex-
ceeding control limits. Change detection percentage is the
proportion of runs in which a change was detected in at least
one of the 50 out of control networks. Conditional expected
delay is the average steps to detect the change, given detec-
tion occurs. The average percentage of the 50 out-of-control
observations exceeding control limits, averaged over 100
runs, is also calculated. These metrics collectively provide
insights into the method’s change detection effectiveness
and efficiency.

3.2. Large Changes

We evaluate four changes to asses the efficacy of our method:
Community splitting, community merging, new community,
and attribute change. Community Splitting: Given the base-
line parameters, we choose one of the four existing com-
munities and randomly split its nodes into two new equally
sized communities as well as sample new cluster centers,
µc, for each of the two partitioned communities. We note
this change does not affect the propensities to connect λr,r

and λr,s remain unchanged. Community Merging: to repli-
cate real-life scenarios, our experimental set-up consists
of merging all nodes of two communities into one. Addi-
tionally, we average the two community cluster centers to
create the merged communities attribute centers. For ex-
ample, the attribute center for the new community formed
by merging communities r and s is µc,merged =

µc,r+µc,s

2 .
New Community: we model a sudden increase in nodes with
unseen attributes by first increasing the number of nodes in
the graph by 25%. Since our base scenario has n = 1, 000
nodes, after the new community is inserted, the graph will
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Figure 1. Results of synthetic experiments over varying community
propensity, λr,r and λr,s, values. Here each point represents
N = 100 simulations at their respective values of λr,r and λr,s

have 1,250 nodes. Thereafter, we repeat the same proce-
dure to generate the attribute information as with the first
communities. Attribute change: In contrast to sudden and
abrupt changes, networks may also undergo gradual shifts
in their underlying structure. We model such changes by pe-
riodically adding noise to the prior cluster centers µc. The
process can be described by the following cluster center pa-
rameterization µc

i+1 = µc
i+τ where τ is a s-dimensional

uniformly distributed noise term. That is, τj ∼ U(0, 1) for
each τj ∈ τ , and i indicates the current iteration of the
noise-adding process. Additionally, we note noise is only
added during Phase II. Table 1 shows the evaluation for the
reported changes. We observe our method is very effective
at detecting these changes, with a change detection percent-
age of 1 and a very low expected delay. Additionally, we see
that when the attributes change slowly, we are still able to
detect this change reasonably quickly with a conditionally
expected delay of 23.38 and a change detection percentage
of 1.

3.3. Structural Change

Another important case is when node attributes are un-
changed, but the graph generation process is altered. For
this case, we consider imposing a change in the level of
interaction between nodes by altering λr,r and λr,s. We
analyze a grid of changes in which we alter each pair of
values sequentially as λs,r = λs,r + 1 and λs,s = λs,s − 1
and we repeat this process until λs,r = λs,s. The result-
ing grid of λ values are in the range of {10, ..., 18} for
λr,s and {2, ..., 10} for λs,s. We visualize how the inherent
block structure changes in App. E. Figure 1 illustrates the
performance of our method across these varying changes,
each step illustrates N = 100 simulations with those con-
figurations. We observe our method is quite accurate at
detecting structural graph changes. Although subtler struc-
tural changes, on average, require a few more timestamps,
they are still detected fairly quickly.
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Figure 2. Control Chart for # Iran Twitter Network when α = 0.2.

3.4. Twitter Dataset

In addition to simulation studies, we analyze a real-world
Twitter dataset. On September 16, 2022, there was massive
outrage within the Iranian community due to the death of
Mahsa Amini, leading to increased activity in the #Iran
Twitter network (Rel, 2023). Here we explore whether
our methodology can detect changes in networks during
such real-world events. To determine this, we construct
a network by using the Twitter API to extract all tweets
containing the #Iran hashtag. These tweets were collected
over an eleven-month period and aggregated weekly; users
are connected if they reply to each other. With these weekly
snapshots, we build Phase I data from the first two months
and Phase II with the rest. We use the text embeddings of
user tweets obtained from a Sentence-Multilingual BERT
model (Reimers & Gurevych, 2019; Conneau et al., 2018)
as node attributes. Figure 2 shows the control chart for
this network. Clearly, the method detects a change point
during the week of the incident. This demonstrates the
practicality of our method when dealing with a real-world
network with high-dimensional textual node attributes. We
provide additional training and dataset details in App. G.

4. Conclusion
In this work, we propose a methodology for detecting com-
munity changes in highly attributed networks. Additionally,
we derive the square root collapse regularizer, which pe-
nalizes suboptimal solutions previous regularizers failed
to. Through extensive simulation studies, we showcase our
method’s ability to detect changes common in real-life net-
works. Additionally, we showcase the practicality of our
method by analyzing a real-world network with textual node
attributes. We demonstrate that our method is capable of
detecting change associated with real-world events.
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B. Related Work
B.1. Network Monitoring

Network monitoring aims to identify both sporadic and ongoing changes in a dynamic network, and has become increasingly
popular within the field of Network Science. One way to approach the problem is by extending process monitoring
techniques commonly used in manufacturing and engineering to the network setting ((Stevens & Wilson, 2021)). (McCulloh
et al., 2007) were the first to coin the term network monitoring, and apply traditional statistical process monitoring techniques
to networks. By surveying network summary statistics, such as betweenness, closeness, and density, they were able to
identify changes in communication within the Al-Qaeda terrorist organization. There have been many further extensions of
this work, where rather than simply tracking local graph statistics, the graph is assumed to follow a specified generative
model whose parameter estimates can then be monitored. Some examples of such generative models are the degree corrected
stochastic block model (DCSBM) ((Karrer & Newman, 2011), (Wilson et al., 2019), (Yu et al., 2018)), the hurdle block
model ((Motalebi et al., 2021)) or the dynamic latent space model ((Artico & Wit, 2023)) to name a few. Additionally,
(Heard et al., 2010) leveraged a Bayesian predictive distribution to define control limits to monitor levels of communication
between individuals using either a Poisson or hurdle Poisson conditional distribution.

While impactful, the mentioned methods lack the ability to account for covariate information, which is more often than not
crucial to modeling the underlying system dynamics. Fortunately, there are works that take this into account, for example,
(Gahrooei & Paynabar, 2018) leverage a logistic regression model, which is able to account for node and/or edge covariates
in order to determine the probability of an edge forming between two individuals. This methodology is convenient as they
are able to directly monitor the model coefficients and attribute a change directly to a specific covariate. Likewise, (Ebrahimi
et al., 2021b) leverage covariates through a hurdle model to explain the propensity of edge weights. Unfortunately, these
methods are limited by the linearity of the underlying model, prioritizing interpretability over complexity.

While using statistical process monitoring methods to survey changing networks is quite popular, many other methods exist
to identify anomalies in such systems. (Huang et al., 2020) choose to monitor dynamic graphs by observing the behavior of
the singular values of the graph Laplacian matrix. Likewise, (Wang et al., 2017) tracks a fixed number of dyads over the
observed snapshots. They model the distribution of dyads through a conditionally independent two-state Markov chain over
a window of snapshots, detecting a change point if the Kullback–Leibler distance between current and historical snapshots
exceeds a threshold.

B.2. Temporal Community Detection

Temporal community detection has become an increasingly important problem over the past decade due to the rise of
social-media, online marketing, and the overall increase in people’s online presence. There are many ways to frame the
problem of temporal community detection. (Xie et al., 2013) view temporal communities as a static entity, that is, a node’s
community label is detected over the proposed series of network snapshots and considered fixed over time. Under this view,
they build the LabelRankT algorithm, which is a heuristic algorithm that allows similarly linked nodes to be assigned the
same label. In contrast, (Qi et al., 2013) proposes viewing the evolution of network communities in a continuous fashion.

Although useful, these methods are highly sensitive to user assumptions such as number of communities, sensitivity to time
decay, and underlying hyperparameter choices ((Alotaibi & Rhouma, 2022)). Many works follow and extend the main ideas
of the prior two methods, and similarly experience the same limitations. (Yu et al., 2019), generalize non-negative matrix
factorization to build a community matrix that is able to be tracked and modeled through time but is highly sensitive to
initial assumptions of the underlying community structure. (Zhao et al., 2019) build a heuristic framework for evolving
community detection that does not require an assumed initial number of communities, but its heuristic nature does not allow
for a quantifiable way to measure the significance of the change.

Other than the mentioned problems, another common limitation of the aforementioned methods is their lack of covariate
modeling. (Wang et al., 2022) consider this by building a generative model that takes into account two types of covariates:
assortative attributes, those associated with the individual (i.e., age, gender, etc.) and generative attributes, those that
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influence a link formation (i.e., shared hobbies, occupation, etc). While this work is able to model the evolution of
communities over time, it incorporates attributes through a logistic regression model, limiting it by the required assumptions
of linear models.

B.3. Deep Learning for Community Based Network Monitoring

Deep learning has become an increasingly popular method when learning high dimensional data and has achieved state-of-
the-art performance on text ((Joseph et al., 2016)), image ((Voulodimos et al., 2018)), and graph related tasks ((Dwivedi
et al., 2020)). While not in direct application to networks, deep learning has even been used to monitor distribution shifts in
dynamic systems, but has mainly been applied to raw time series ((Gupta et al., 2022),(Atashgahi et al., 2022)). Additionally,
(Hashemi et al., 2023) developed a DL learning architecture that is able to detect changes to network communities over
time and with the ability to adapt to changes in distribution through a meta-learning framework. Unfortunately, their work
is rooted in a supervised learning framework that requires ground truth community labels, something that is very rare in
real-world datasets.

Unlike the aforementioned methods, there exists DL-based community detection methods that are not restricted by the
need for ground truth labels. For example, (Sun et al., 2019) assume edges are generated using a hierarchical procedure
with a hidden variable representing node community membership. They then use a variational approach to reconstruct the
adjacency matrix, concurrently finding the most likely community memberships. Similarly, (Tsitsulin et al., 2023) propose
deep modularity networks (DMoN) which find local graph partitions, synonymous with communities, by directly optimizing
the spectral modularity statistic. While these models are able to find high-quality clusters, they operate on a single network
and do not generalize to a set of time-varying networks.

C. Regularizers
A simple demonstration of the effects of our procedure are shown in Figure 3 which compares our square root collapse
regularizer and the collapse regularizer. For this illustration, we use a simple example with 3 evenly sized communities,
k = 3, but it generalizes to any k ≥ 2. When employing the collapse regularizer, assigning a uniform distribution over
the community assignments to all the nodes is equivalent to the optimal solution of assigning communities with certainty.
On the other hand, the square root collapse regularizer addresses this issue by providing a larger value for the suboptimal
solution, which can then be penalized.

D. Training Setup
To be able to utilize a control chart with our method, we define Phase I by first training our model over a dynamic graph
with snapshots, G1, ..., Gm. This allows our model to learn the stationary behavior of the network. Once converged, we
calculate the modularity of the remaining unobserved snapshots, Gm+1, ..., GT . In Phase II, we track the behavior of the
graph using an EWMA control chart, where we choose St to be the modularity scores of each successive graph. Through
extensive synthetic experimentation, we demonstrate that this methodology is able to robustly detect changes in both graph
attributes and graph structural changes. Our methodology is illustrated in Figure 4.
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Figure 3. Comparison of square root collapse regularizer and collapse regularizer

Figure 4. Illustration of model learning during Phase I & monitoring during Phase II
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E. Block Visualization for Structural Changes
Figure 5 illustrates how the Λ matrix changes as we alter varying values of λr,r and λr,s.

Figure 5. Heatmap representation of varying λr,r and λr,s values

F. No Change
In addition to the explored changes, our method must also be evaluated in scenarios where there is no change to the graph
structure or attributes. Unlike the other sections focused on change detection, our objective in this case is different – we do
not want to detect changes and hence having a low average percentage over the threshold becomes ideal as it suggests the
robustness of our method to type I errors. The performance of our method under these conditions is illustrated in Table 2,
where we observe a consistently low average percentage over the threshold, indicating a low false alarm rate. This is slightly
larger than the nominal 0.05 value; this small difference is likely due to the monitored modularity scores not precisely
following the distributional assumptions made by the EWMA control chart. Figure 6, showcases an example control chart
for this scenario. It can be seen there are no anomalous points in this case and the modularity remains stationary throughout
both Phase I and II.

α Average Percentage Over Threshold
0.2 0.07

Table 2. Performance summaries across N = 100 replications when no change is injected

G. #Iran Network
G.1. Data

We scrape the #Iran network for a seven-month period, an undirected edge is created when two users reply to each other. We
build the text embedding by pooling the tweet embeddings of user tweets and their replies. If a user has multiple tweets in a
single snapshot, we create a node embedding by averaging all tweets within that snapshot. We note the number of users may
vary between each snapshot with an average of 5254.74 over all the snapshots with a standard deviation of 2,771.93. We
collect the data over an eleven-month period from June 3rd 2022, to March 31st 2023. Unfortunately, due to Twitter policies,
we cannot make this data public. However, we will open-source all code and simulation data upon acceptance.

11



Changepoint Detection in Highly-Attributed Dynamic Graphs

Figure 6. EWMA control chart when there is no change injected α = 0.2

G.2. Training

We train our DMoN model sequentially on Phase I graphs. We tune the number of communities (k), the learning rate, and
dropout by reserving one Phase I snapshot for evaluation. Using the best performing model on the evaluation snapshot, we
build the Phase I limits. We use this model throughout Phase II to calculate the modularity of each snapshot.
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