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Abstract
The biopharmaceutical industry constantly
presses for fast and low-cost bioprocess moni-
toring strategies. However, a recent study has
shown that the Joint Extended Kalman Filter
(JEKF) is inefficient in this monitoring type
under biomanufacturing conditions. This work
investigates the Dual Extended Kalman Filter
(DEKF), Joint Unscented Kalman Filter (JUKF),
and Joint Cubature Kalman Filter (JCKF) under
these challenging conditions. Our theoretical
analysis also reveals inefficiencies in DEKF,
while our empirical tests using a synthetic dataset
indicate that JUKF and JCKF only perform well
with specific initial conditions for the state error
covariance matrix, although with unconventional
Kalman gain behavior. These results suggest
nonlinear Kalman estimators in biomanufacturing
still merit further investigation.

1. Introduction
Bioprocess monitoring is crucial for the development of bio-
pharmaceutical processes (Rathore et al., 2023; Narayanan
et al., 2023) and to achieve the goals of several initiatives,
such as Quality by Design, Process Analytical tools, and
Pharma 4.0 (Christakis et al., 2023; Mandenius & Gustavs-
son, 2015; Murugan, 2021; Sokolov et al., 2021). However,
there is constant pressure for monitoring strategies that are
fast and low cost. The literature indicates that soft sen-
sors based on nonlinear Kalman estimators (NKE) with
unstructured mechanistic model (UMM) can enable bio-
process monitoring (Christakis et al., 2023; Mandenius &
Gustavsson, 2015; Murugan, 2021; Sokolov et al., 2021).
NKE known as Extended Kalman Filter (EKF), Unscented
Kalman Filter (UKF), and Cubature Kalman Filter (CKF)
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are composed of the error covariance matrices of the pro-
cess (Q), measurement (R), and state (P). The integration
of NKEs and UMM can be performed with joint and dual
strategies to estimate the states and parameters of a UMM.
The joint NKE (JNKE) considers a single joint state vari-
able vector, which includes both the states and parameters
of a UMM (Ljung, 1979; Kopp & Orford, 1963; Haykin
& Haykin, 2001), and the dual NKE (DNKE) employs two
consecutive NKE, separating the estimation of the system
states and parameters (Ji & Brown, 2009). However, al-
though Joint EKF (JEKF) has been used in many different
bioprocess monitoring applications (Yousefi-Darani et al.,
2021b; Herwig et al., 2021a;b; Iglesias Jr et al., 2022; Igle-
sias & Bolic, 2022), it has limitations for fast and low-cost
bioprocess monitoring. It was recently demonstrated that
joint estimation of states and unshared parameters (param-
eters not shared with other components of UMM) using
an extended Kalman filter ”fails” under the biomanufactur-
ing conditions for fast and low-cost bioprocess monitoring
(Iglesias Jr & Bolic, 2024). In biomanufacturing, a generic
UMM allows modeling the macro-scale of a phenomenon
without known mechanisms. This is extremely useful be-
cause, using JNKE with UMM, we can enable the real-
time monitoring of bioprocesses with unknown mechanisms
(Iglesias Jr et al., 2023). The UMM used in biomanufac-
turing typically comprises ordinary differential equations
(ODE) with unshared parameters and weak terms. However,
Iglesias et al. (Iglesias Jr & Bolic, 2024) proved that this
characteristic of UMM in biomanufacturing, along with the
use of P(t=0) and Q with uncorrelated elements, as well as
the presence of only one measured state variable, are the
conditions where the JEKF cannot estimate the unshared
parameters and the state simultaneously. This issue, charac-
terized by a zero Kalman gain for the unshared parameter
during the entire process, can be addressed with the Specific
initiAl coNdiTiOn (SANTO) approach where the idea is
to add a quantity to the state error covariance between the
measured state Variable (MSV) and an Unshared Parameter
(UP) in P(t=0) (Iglesias Jr & Bolic, 2024). Since Dual EKF
(DEKF) is a well-known alternative to Joint EKF, and the
UKF and CKF are known for better performance than EKF
(in addition to bypassing the need for first-order Taylor se-
ries expansion for linearization)(Khodarahmi & Maihami,
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2022), three questions remain unanswered.

In this work, we investigate the following research question:
RQ0) Can DEKF estimate the unshared parameters and
the state simultaneously under the biomanufacturing con-
ditions for fast and low-cost bioprocess monitoring? RQ1)
How are the performances of JUKF and JCKF under the
same biomanufacturing conditions? RQ2) Can the SANTO
approach improve the performance of JUKF and JCKF?
Our main contributions are: 1) Theoretical analysis that
proves the inability of DEKF to simultaneously estimate the
unshared parameters and the state under the studied bioman-
ufacturing conditions. 2) Empirical results, using a synthetic
dataset of monoclonal Antibody (mAb) productions with
new challenge scenery, showing that JUKF and JCKF per-
formed better only with the SANTO approach, but with an
unconventional behavior of Kalman gain in one of the stud-
ied cases. The codes and data used in this study are available
in the gitHub repository to facilitate reproducibility 1.

2. Background
2.1. Conditions for fast and low-cost bioprocess

monitoring

Fast and low-cost bioprocess monitoring can be defined as a
set of methods designed to track and analyze the parameters
and states (critical process parameters and quality attributes)
of biomanufacturing in real time to minimize both capital
and operational expenses (Iglesias Jr et al., 2023; Zimmer-
leiter et al., 2020; Fonseca & Zaiat, 2023). An example of
fast and low-cost bioprocess monitoring involves the real-
time estimation of nutrients, metabolites, and production
formation based on online cell growth measurements. This
strategy is low-cost because it requires only one device to
measure cell growth (Xv) instead of multiple assays/devices
to perform offline and online measurements of all state
variables, as in traditional approaches to monitoring biopro-
cesses. In addition, it is fast because nutrients, metabolites,
and production formation are estimated in real-time, while
the conventional methods take hours or days (Iglesias Jr
et al., 2022; 2023).

Given that, the biomanufacturing conditions for fast and
low-cost bioprocess monitoring with a NKE are: 1) A state
variables vector defined as x = [xmsv, x2, . . . , xn].
2) xmsv as the unique measured state variable
(MSV). 3) A UMM represented by a system of non-
linear differential equations of the form: f(x) =
[dxmsv

dt = f1(xmsv, x2, . . . , xn−1, θ1, θ2, . . . , θm), dx2

dt =

f2(xmsv, x2, . . . , xn−1, θ1, θ2, . . . , θm), · · · , dxn

dt =
fn(xmsv, θup)] where xmsv and x2, . . . , xn are the
variables of the system, f1, f2, . . . , fn are the functions

1https://github.com/cristovaoiglesias/
NKEs-SANTO

defining the system represented by f(·), and θ1, θ2, . . . , θm
are the parameters of the system, and θup an unshared
parameter. 4) R as measurement noise variance of xmsv.
5) θup as the unshared parameter (UP) to be evolved
(estimated) and presented in only one weak term. A
weak term is a term of an ODE with a low percentage
of variables of the state variable vector, and a ”strong
term” is one with a high percentage of variables of the
state variable vector (Iglesias Jr & Bolic, 2024). 6)
P = Diag([Pxmsv,xmsv

, Px2,x2
, · · · , Pn,n, Pθup,θup

]) and
Q = Diag([Qxmsv,xmsv

, Qx2,x2
, · · · , Qn,n, Qθup,θup

])
with uncorrelated elements due to limited data, meaning
they are diagonal with nonzero diagonal elements (noise
variances) and zero off-diagonal elements (Ohadi et al.,
2015; Paquet-Durand et al., 2020; Yousefi-Darani et al.,
2020b; Iglesias Jr et al., 2022).

Due to the limited space, the background information about
UMM, NKE, and SANTO can be seen in the Appendix A.

3. Theoretical Analysis
If the process and measurement noises can be assumed to
be additive, a state space model can be written as

xk = f(xk−1) + qk−1, qk−1 ∼ N(0,Qk−1)

yk = h(xk) + rk, rk ∼ N(0,Rk)
(1)

where xk ∈ Rn is the state, where yk ∈ Rm is the measure-
ment, qk−1 ∼ N(0,Qk−1) is the Gaussian process noise,
rk ∼ N(0,Rk) is the Gaussian measurement noise, and
h(·) is the measurement model function. Then, using the
DEKF (see algorithm 1 Appendix B.5), we can estimate the
state and parameters of the state space model (Equation 1).
However, in the presence of biomanufacturing conditions
for fast and low-cost bioprocess monitoring, we have the
issue case described by the following theorem.

Theorem 3.1. The DEKF cannot estimate an unshared
parameter (parameter evolution) that is part of a weak term
in a UMM if the unshared parameter is not part of the
nonlinear function that models the unique state variable
measured.

Theorem 3.1 negatively answers the RQ0, and the proof can
be seen in the Appendix C. It shows that the ”failure” arises
from the inability of the algorithm to derive any informa-
tion about the unshared parameter from the measured state
variable.

4. Empirical Evaluation
Here, the objective is to answer RQ1 and RQ2 by assessing
the ability of the NKEs to simultaneously estimate state vari-
ables and unshared parameters in a synthetic monoclonal
Antibody (mAb) production dataset and evaluating the im-
provement in performance with the SANTO approach.
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Figure 1. Synthetic dataset regarding the mAb production. The
run A-SD (red lines) was generated using the original parameters
proposed by (Liu & Gunawan, 2017). Run B-SD (black lines)
has the maximum cell expansions and maximum of mAb (titer)
production of SD. On the other hand, the run C-SD (brown lines)
has the minimum cell expansions and mAb (titer) production. The
Xv of B-SD and C-SD with noise is highlighted in grey and in
orange in the first plot. These noises are used to evaluate the
performance of the NKEs to estimate mAb and QmAb.

4.1. Synthetic Dataset - mAb production

The Synthetic dataset (SD) has data regarding Monoclonal
Antibody (mAb) productions that represent the biomanu-
facturing of a protein widely used as diagnostic reagents
and for therapeutic purposes (Jyothilekshmi & Jayaprakash,
2021). The SD is composed of three runs (A-SD, B-SD,
and C-SD) with different cell expansions and different max-
imums of mAb (titer) production. The runs of SD can be
seen in Figure 1, and the runs have a sample rate of 7.5 min-
utes during 103 hours of the process. It is important to point
out that C-SD represents a challenging additional scenery
to those studied in (Iglesias Jr & Bolic, 2024). The details
about the development of the SD can be seen in Appendix
E.1.

4.2. NKEs assessment with synthetic dataset to address
RQ1 and RQ2

All NKEs (JEKF-Classic, JUKF-Classic, JCKF-Classic,
JEKF-SANTO, JUKF-SANTO, and JCKF-SANTO) used
the UMM described in Appendix D.1 as process model and
the same initial concentration regarding the state variables,
(see Table 4 in the Appendix). The NKEs were used to cor-
rect (estimate) the predictions regarding state variables (Xv
and mAb) and to evolve the unshared parameter (QmAb) of
the process model simultaneously. This was done using the
Xv samples with the noise of the run B-SD and C-SD as the
unique measured state variable and the parameters used to
generate the run A-SD as initial parameters of the process
model (see Table 3 in Appendix). This situation represents a

Table 1. RMSPE between NKEs estimations about mAb and
ground truth of run B-SD and run C-SD

NKE RMSPE (run B-SD) RMSPE (run C-SD)
JEKF-SANTO 1.92% 1.83%
JUKF-SANTO 1.75% 1.80%
JCKF-SANTO 1.11% 1.12%
JEKF-Classic 18.6% 48.1%
JUKF-Classic 18.4% 48.1%
JCKF-Classic 18.4% 48.3%

joint estimation problem where the prediction and parameter
of the process model should be corrected by the NKEs based
on measured state variable Xv with noise. For example, the
initial value used for QmAb is the value of run A-SD (QmAb
= 7.21 ×10−9 mg cells−1h−1), and it should be evolved to
the value of run B-SD (9.21 ×10−9 mg cells−1h−1) based
on Xv with the noise of run B-SD. In the case of run C-SD,
QmAb should evolve from 7.21 ×10−9 mg cells−1h−1 to
4.21 ×10−9 mg cells−1h−1. Furthermore, the Xv (without
noise) and mAb samples of run B-SD and C-SD were used
as ground truth too. In addition, the root mean square per-
centage error (RMSPE) was used as a metric to assess the
similarity between NKEs estimations and the ground truth of
run B-SD and C-SD. It is important to point out that in case
of run B-SD, we applied the SANTO approach by adding a
small positive quantity to PXv,QmAb = PQmAb,Xv

of P(0),
and in case of run C-SD we added a small negative quan-
tity. This was done because PXv,QmAb is an off-diagonal
element of P(0), and it can be a positive or negative quantity.
The details about the design of NKEs related to R, Q and
P(0) with SD can be found in Appendix E.2.

4.3. Results and Discussion

Answer to RQ1. The estimations regarding the states of
Xv and mAb, and the unshared parameter (QmAb) done
by classic JEKF, JUKF, and JCKF can be seen in Figures
2, and 3. In the case of run B-SD (Figure 2), the classic
JEKF was not able to evolve (update) the QmAb, because
the estimations were constant and equal to the initial value
of 7.21 ×10−9 mg cells−1h−1 (purple dash line in Plots
B and C). On the other hand, the classic JUKF and JCKF
evolved QmAb (green and blue dash line in Plot C) but not
significantly to arrive close to ground truth (red dash line in
Plot B). Consequently, the classic JEKF, JUKF, and JCKF
estimation regarding mAb were far from the ground truth of
run B-SD (red dash line in plot D), and they had the highest
RMSPE values, see Table 1. It is essential to point out that
the Kalman gain over time (related to QmAb) that was ob-
tained by JEKF-Classic is constant and equal to zero (purple
dash line in Plots E, F, and G) as described in (Iglesias Jr &
Bolic, 2024). However, the Kalman gain values obtained by
classic JUKF and JCKF presented fluctuation around zero.
We created two plots in different scales to visualize the fluc-
tuation of their Kalman gain values (green and blue dash
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Figure 2. Empirical test with run B-SD. Plot A demonstrates noise
levels and estimations of Xv, closely aligning with the ground truth.
Plot B covers QmAb estimations by JEKF-Classic, JEKF-SANTO,
JUKF-SANTO and JCKF-SANTO, while Plot C focuses on the
classic versions of JUKF-Classic and JCKF-Classic. Plot D shows
the mAb estimation done by all NKEs . Plots E, F and G show the
Kalmain Gain over time for the NKEs.

lines in Plots F and G). Furthermore, the obtained results
with run C-SD (Figure 3) by classic JEKF, JUKF, and JCKF
were similar to the ones obtained with run B-SD (Figure 2).
They also could not simultaneously estimate the Xv, mAb,
and QmAb (the estimations were far from the red dash line
in Plots B and C), and the Kalman gain values also had the
same behavior.

Answer to RQ2. The estimations regarding Xv, mAb, and
QmAb done by the NKEs (JEKF, JUKF, and JCKF) with
the SANTO approach can be seen in Figures 2, and 3. In
the case of run B-SD (Figure 2), all NKEs with the SANTO
approach evolved the QmAb from the initial value to the
ground truth (red dash line in Plot B), and consequently,
they estimated the mAb close to the ground truth of run
B-SD (red dash line Plot D). This is confirmed by their
smallest RMSPE values; see Table 1. Furthermore, the
Kalman gain values obtained by all NKEs with SANTO
presented a normal and stable behavior starting from a pos-
itive value and converging to a small value close to zero,
see plot E. However, in the case of run C-SD (Figure 3), de-

Figure 3. Empirical test with run C-SD. Plot A demonstrates noise
levels and estimations of Xv, closely aligning with the ground truth.
Plot B covers QmAb estimations by JEKF-Classic, JEKF-SANTO,
JUKF-SANTO and JCKF-SANTO, while Plot C focuses on the
classic versions of JUKF-Classic and JCKF-Classic. Plot D shows
the mAb estimation done by all NKEs . Plots E, F and G show the
Kalmain Gain over time for the NKEs.

spite all NKEs with SANTO estimate simultaneously mAb
and QmAb close to the ground truth (Plots B and D), their
Kalman gain values presented an unconventional behavior.
They started from a negative value and converged to a small
value close to zero; see plot E. This is a consequence of
adding a small negative quantity to PXv,QmAb of P(0) that
includes a negative component in the Kalman gain compu-
tation.

5. Conclusion and Future works
Our analysis and empirical results demonstrated that the
DEKF, JUKF, and JCKF are inefficient under the conditions
studied. The SANTO approach, however, improved the
performance of JUKF and JCKF, achieving lower RMSPE
values than the classic versions. Nevertheless, the empirical
test using run C-SD showed unconventional Kalman gain
values for all NKEs with the SANTO approach, starting
from a negative value and converging to near zero. Future
work will focus on developing a hybrid NKEs and an auto-
tune approach for all NKE components, including process
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model parameters, to address cases like run C-SD.
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Akca, A. and Efe, M. Ö. Multiple model kalman and particle

filters and applications: A survey. IFAC-PapersOnLine,
52(3):73–78, 2019.

Arasaratnam, I. and Haykin, S. Cubature kalman filters.
IEEE Transactions on automatic control, 54(6):1254–
1269, 2009.

Aswal, N., Sen, S., and Mevel, L. Switching kalman filter
for damage estimation in the presence of sensor faults.
Mechanical Systems and Signal Processing, 175:109116,
2022.

Biomatik. How much does it cost to make a custom anti-
body?, 2022. url - https://www.biomatik.com/blog/how-
much-does-it-cost-to-make-a-custom-antibody/, Ac-
cessed: 2024-05-30.

Capra, E., Godfre, A., Loche, A., and Smith, J. Gene-
therapy innovation: Unlocking the promise of viral
vectors. Recuperate by: https://www. mckinsey.
com/industries/life-sciences/our-insights/gene-therapy-
innovat ion-unlocking-the-promise-of-viral-vectors,
2021.

Chopda, V., Gyorgypal, A., Yang, O., Singh, R., Ramachan-
dran, R., Zhang, H., Tsilomelekis, G., Chundawat, S. P.,
and Ierapetritou, M. G. Recent advances in integrated pro-
cess analytical techniques, modeling, and control strate-
gies to enable continuous biomanufacturing of mono-
clonal antibodies. Journal of Chemical Technology &
Biotechnology, 97(9):2317–2335, 2022.

Christakis, I., Tsakiridis, O., Kandris, D., and Stavrakas, I.
A kalman filter scheme for the optimization of low-cost
gas sensor measurements. Electronics, 13(1):25, 2023.

Fonseca, R. F. and Zaiat, M. Development of a low-cost
electrochemical sensor for monitoring components in
wastewater treatment processes. Environmental Technol-
ogy, 44(25):3883–3896, 2023.

Forum, W. E. The bio revolution: Innovations trans-
forming economies, societies, and our lives, 2020.
https://www.mckinsey.com/industries/life-sciences/our-
insights/the-bio-revolution-innovations-transforming-
economies-societies-and-our-lives.

Haykin, S. S. and Haykin, S. S. Kalman filtering and neural
networks, volume 284. Wiley Online Library, 2001.

Hernandez, I., Bott, S. W., Patel, A. a., Wolf, C. G., Hospo-
dar, A. R., Sampathkumar, S., and Shrank, W. H. Pricing
of monoclonal antibody therapies: higher if used for can-
cer. Am J Manag Care, 24(2):109–112, 2018.

Herwig, C., Pörtner, R., and Möller, J. Digital Twins:
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A. Background Extension

B. Motivation
Biomanufacturing has significant economic importance (Forum, 2020). The estimated value of the worldwide biotechnology
market stood at USD 1.37 trillion in 2022. It is projected to expand at a compound annual growth rate (CAGR) of 13.96%
from 2023 through 2030 (Research, 2020). To achieve this target, it is necessary to employ more cost-effective solutions
and smart manufacturing while simultaneously not sacrificing the process robustness and product quality when aiming for
higher process productivity, more affordable end-products, and shorter production times (Khuat et al., 2024). Therefore,
there is constant pressure for bioprocess monitoring strategies that are fast (efficient) and low-cost (cost-effective) (Niazi &
Lokesh, 2022; Khuat et al., 2024; Hetzler et al., 2023), particularly for the upstream stages of viral vectors and monoclonal
antibodies productions (Khuat et al., 2024). Some reasons for this include the following.

First, bioprocess monitoring in areas like cell and gene therapy relies more heavily on offline measurements (Hetzler et al.,
2023; Reyes et al., 2022). Commercial manufacturing still heavily relies on time-consuming offline analytics and manual
control strategies (Khuat et al., 2024). For example, nutrients (glucose, glutamine) and metabolites (lactate, ammonium) can
be measured using inline near-infrared (NIR) sensors. However, due to potential cross-interference with other molecular
species, the current industrial standard method of measuring glucose, glutamine, lactate, and ammonium is still based on
offline measurement (Reyes et al., 2022; Hetzler et al., 2023). Online sensing involves high-frequency measurements from
the sensors, and offline sensing involves collecting samples from the biomanufacturing process and analyzing them in a
separate laboratory setting. It often takes several hours or days for the result to arrive (Chopda et al., 2022; Iglesias & Bolic,
2022; Papathanasiou et al., 2019). Thus, offline sensing typically leads to a lower level of process control and a higher
demand for labor (Hetzler et al., 2023). Typically, these offline techniques, which involve extracting cells from the bioreactor,
are often time-intensive, labor-intensive, and lead to waste due to the use of expensive and potentially harmful reagents and
samples (Tulsyan et al., 2019; Khuat et al., 2024). Furthermore, offline measurements are performed infrequently (e.g., every
12–24 hours), resulting in low-resolution process monitoring and the risk of missing metabolic changes in cells that could
indicate process alterations or operational problems, making control strategies based on offline analytical measurements
often ineffective (Tulsyan et al., 2021; Khuat et al., 2024). Additionally, each sample taken from the bioreactor carries a
risk of contamination or batch loss (Tulsyan et al., 2019). Second, factors such as labor costs, raw materials, equipment,
facility expenses, the type and quantity of in-process control analyses, and overall output all influence the bioprocess
economy (Niazi & Lokesh, 2022). Additionally, there are often overlooked costs associated with lifecycle management,
a lack of process agility when deviations occur, and regulatory compliance updates. For instance, the production cost of
monoclonal antibodies varies significantly due to the factors presented previously, and it is expensive. An annual mAb
therapy in oncology can cost around $100,000. Producing one mAb can range from $6,000 to $15,000 (Biomatik, 2022;
Hernandez et al., 2018; SU Support, 2024). Another example is the production of recombinant Adeno-Associated Virus.
Currently, a standard production run of a recombinant Adeno-Associated Virus vector treatment costs around $100,000 per
dose (considering approximately 1 × 1017 vg per batch) (Capra et al., 2021). Therefore, any technological innovation that
reduces the cost per dose would be immediately beneficial (Capra et al., 2021; Niazi & Lokesh, 2022).

Fast (efficient) and low-cost (cost-effective) bioprocess monitoring can be defined as a set of methods designed to track
and analyze the parameters and states (critical process parameters and quality attributes) of biomanufacturing in real time
to minimize both capital and operational expenses (Iglesias Jr et al., 2022; 2023; Niazi & Lokesh, 2022). An example
illustrating an ”extreme case” of fast and low-cost bioprocess monitoring involves the real-time estimation of nutrients
(glucose, glutamine), metabolites (lactate, ammonium), and production formation (titer) based on online viable cell density
(Xv) measurements and initial conditions (Yousefi-Darani et al., 2020a; 2021a). This strategy is low-cost because it requires
only one device to measure Xv instead of multiple assays/devices to perform offline and online measurements of all state
variables, as in traditional approaches for bioprocess monitoring. In addition, it is fast because nutrients, metabolites, and
production formation are estimated in real-time, while the offline methods take hours or days to deliver results, as discussed
before (Iglesias Jr et al., 2022; 2023; Niazi & Lokesh, 2022). It is important to note that the information about product
formation, such as titer, is typically available only after the end of the process, such as viral vectors and monoclonal antibody
productions, which takes several days through offline measurements.

The literature indicates that soft sensors based on nonlinear Kalman estimators (NKE) with unstructured mechanistic models
(UMM) can enable fast and low-cost bioprocess monitoring and achieve the goals of several initiatives, such as Quality by
Design, Process Analytical tools, and Pharma 4.0 (Reyes et al., 2022; Christakis et al., 2023; Mandenius & Gustavsson, 2015;
Murugan, 2021; Sokolov et al., 2021). Soft sensors based on NKE with UMM can enable real-time monitoring of CPP or
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CQA that are difficult to measure directly or that can only be measured at low sampling frequencies in a bioprocess (Sinner
et al., 2021; Yousefi-Darani et al., 2020a). UMMs allow modeling the macro-scale of the bioprocess phenomenon, and they
can be divided into two groups. Specific UMMs provide a detailed and customized description of a particular bioprocess,
while Generic UMMs offer a more generalized framework that can be adapted to various bioprocesses with the help of
additional computational tools. NKE are nonlinear state estimators based on the Kalman Filter (KF) framework. NKEs use
a two-step recursive algorithmic process: prediction and update (Khodarahmi & Maihami, 2022; Särkkä & Svensson, 2023).
NKEs are widely applicable in various fields today, and the most popular NKEs are (Akca & Efe, 2019): Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), and Cubature Kalman Filter (CKF). The most used NKE in bioprocess
monitoring are EKF and UKF (Yousefi-Darani et al., 2020a). It is essential to note that other nonlinear state estimators
exist, such as particle filtering (PF). However, due to the simple structure (practical implementation) and low computational
effort of NKEs, these methods have gained more interest. Many research studies have been dedicated to the implementation
of such filters for state and parameter estimation in bioprocess technologies based on micro-controllers which requires
numerically economical and robust algorithms, such as NKEs (Zhao et al., 2023; Reyes et al., 2022; Yousefi-Darani et al.,
2020a; Herwig et al., 2021b;a; Aswal et al., 2022; Nelson & Stear, 1976). The optimal performance of NKEs relies on the
proper tuning of five components: i) the process noise covariance matrix (Q), ii) the measurement noise covariance matrix
(R), iii) the initial state noise covariance matrix (P(0)), iv) initial condition of state variables (x0) and v) parameters (θ) of the
UMM (Li et al., 2021; Khodarahmi & Maihami, 2022; Särkkä & Svensson, 2023). In general, to enhance the performance
of NKE as soft sensors, they are performed with joint and dual strategies to estimate the states and parameters of a UMM.
The joint NKE (JNKE) considers a single joint state variable vector, which includes both the states and parameters θ of the
UMM (Ljung, 1979; Kopp & Orford, 1963; Haykin & Haykin, 2001), and the dual NKE (DNKE) employs two consecutive
NKE, separating the estimation of the system states and parameters (Ji & Brown, 2009). JNKE and DNKE are motivated by
the need to correct the prediction of a UMM regarding state variables and to update the UMM by evolving its parameters
based on the corrections made (Haykin & Haykin, 2001). However, although JNKE and DNKE have been used in many
different bioprocess monitoring applications (Yousefi-Darani et al., 2020a; 2021a; Paquet-Durand et al., 2020; Ji & Brown,
2009; Herwig et al., 2021a;b; Iglesias Jr et al., 2022; Iglesias & Bolic, 2022), the classic NKEs with UMM are limited to
fast and low-cost bioprocess monitoring, and improvements are needed to handle different biomanufacturing conditions.

B.1. Biopharma is a data-limited industry

Obtaining data in biopharmaceutical studies is costly and time-consuming due to the necessity of conducting biological
experiments, which require significant time and resources. Additionally, these data are often linked to strategic products
and confidential information of pharmaceutical companies, making it challenging to publicly share them with the research
community. This lack of publicly available benchmark datasets hinders the reproducibility of machine learning (ML)
solutions for bioprocess data, essential for assessing effectiveness and performing comparative analyses between different
algorithms. The bioprocess data are expensive to obtain, requiring time-consuming, labor-intensive, and costly biological
experiments (Khuat et al., 2024). Furthermore, these data are associated with strategic products and business secrets,
making them unlikely to be publicly shared, preventing the explosive growth of ML solutions in biopharmaceuticals
compared to fields like natural language processing and computer vision. Artificial intelligence and machine learning
(AI/ML) techniques are suitable for learning patterns in data from high-dimensional design spaces with complex non-linear
interactions (Narayanan et al., 2023; Khuat et al., 2024). However, the effective use of AI/ML requires high-quality data in
significant quantities to develop useful and applicable models for biopharmaceutical applications. The biopharma industry is
particularly data-limited regarding actively generated data, as each experiment and analysis is resource-intensive, limiting
the number of experiments and corresponding data that can be generated (Narayanan et al., 2023). While the industry
possesses substantial ”historical data,” these were not collected for AI/ML training purposes and contain biases in the design
spaces explored and information recorded, affecting overall data quality. However, it is important to point out that hybrid
dynamic models and NKE with UMM can overcome this need for large amount of data and enable the development of soft
sensor for fast and low-cost bioprocess monitoring.

B.2. Unstructured Mechanistic Model (UMM)

UMMs also known as Unstructured Mechanistic Kinetic Models, are pivotal in modeling the temporal progression of
bioprocesses like the production of therapeutic monoclonal antibodies (mAbs), projected to generate USD 300 billion by
2025, and rAAV production, a leading viral vector technology for gene therapy (Kyriakopoulos et al., 2018; Luo et al., 2021;
Iglesias Jr et al., 2022; 2023). These models, grounded in fundamental principles, are key to understanding and simulating
bioprocess dynamics at the macro-scale, such as cell density, viability, and nutrient/metabolite concentrations. Despite their
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Table 2. Glossary
JEKF Joint estimation of states and parameters with Extended Kalman Filter
JUKF Joint estimation of states and parameters with Unscented Kalman Filter
JCKF Joint estimation of states and parameters with Cubature Kalman Filter
NKE Nonlinear Kalman Estimator
UMM Unstructured Mechanistic Model
MRDE Matrix Ricatti Differential Equation
MSV Measured State Variable
UP Unshared parameter

SANTO Specific initiAl coNdiTiOn
CD-EKF Continuous-Discrete EKF

SD Synthetic dataset
mAb Monoclonal Antibody

critical role in digital twin (DT) development and soft sensors, the industrial application of UMMs is still nascent (Moser
et al., 2020; Park et al., 2021; Mears et al., 2017; Reyes et al., 2022). In contrast to Structured Mechanistic Models (SMMs),
which delve into the intracellular details of a homogeneous cell population and are more complex, requiring extensive
expertise for development, UMMs are less detailed but more practical for dynamic control in common biomanufacturing
bioreactors (Luo et al., 2021; Tsopanoglou & del Val, 2021). SMMs are better suited for cell-line development, focusing on
genomic-level alterations for desired process behaviors. However, the predictive capability of simple UMMs is limited,
often failing to accurately estimate process states across different operating conditions (Zhang et al., 2019). To enhance their
predictive accuracy, UMMs are frequently integrated with the Kalman filter and its nonlinear variants like the extended
Kalman filter, effectively predicting unobserved states.

B.3. Nonlinear Kalman Estimators

The two-step recursive algorithmic process used by Nonlinear Kalman Estimators (EKF, UKF, and CKF) is summarized as
follows (Akca & Efe, 2019; Khodarahmi & Maihami, 2022):

• Prediction step: This step is where the state and error are propagated forward in time. In this step the predicted mean
of state, x̂k/k−1, and predicted error covariance matrix of state Pk/k−1 are obtained using a process model (nonlinear
system dynamics), a initial condition (x̂0 and P0) and Q. See the Figure 4. Here is a description of the prediction step
performed by each of the Nonlinear Kalman Estimators:

– EKF: Linearizes the system’s dynamics around the current state estimate to predict the next state (Julier &
Uhlmann, 1997).

– RKF: Similar to EKF but incorporates mechanisms to handle model uncertainties and outliers. It adapts to model
uncertainties and outliers, enhancing resilience to deviations from nominal assumptions (Rocha & Terra, 2021).

– UKF: Uses a set of deterministically chosen sample points (sigma points) to capture the mean and covariance
of the state estimate and propagates these through the nonlinear system dynamics. UKF uses a deterministic
sampling to approximate nonlinear transformations without linearization (Wan & Van Der Merwe, 2000).

– CKF: Employs cubature rules to compute the integral of the state transition function over the state distribution,
effectively predicting the next state without linearization (Arasaratnam & Haykin, 2009).

• Update step: This step is the same for all Nonlinear Kalman Estimators (EKF, UKF, RKF, and CKF). In this step the
Predictions ( x̂k/k−1 and Pk/k−1 ) are combined with the measured values (yk) to provide updated states and errors
(x̂k/k and Pk/k) using R. This involves calculating the Kalman gain, determining how much the state prediction should
be corrected based on the new measurement, and updating the error covariance to reflect the reduced uncertainty after
incorporating the measurement. In addition, the updated state becomes the initial condition for the next prediction
performed by the prediction step, x̂0 = x̂k/k and P0 = Pk/k. See the Figure 4.
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Figure 4. Two-step recursive algorithmic process used by Nonlinear Kalman Estimators such as EKF, UKF, and CKF. The state predictions
are updated with new measurements, and this updated state becomes the basis for the next prediction.

B.4. JEKF, JUKF, and JCKF Overview

B.4.1. JEKF (JOINT EXTENDED KALMAN FILTER)

JEKF is a Bayesian filter-based approach for joint estimation in nonlinear dynamical systems. It concatenates states xi and
parameters θ of a process model into a single joint state vector. The state variables vector ψ(t) in JEKF is extended as:

ψ(t) = [x1, x2, ..., xn, θ1, ..., θn]
T . (2)

In JEKF, the learning involves both states xi and parameters θi of a discrete-time nonlinear system (e.g., UMM). It corrects
system states and model parameters simultaneously based on observed noisy signals Zk. JEKF is recognized for parameter
evolution, where parameters are treated as random variables with noise added at each timestep:

θ(tk) = θ(tk−1) + noise, (3)

This approach is efficient for updating process model parameters, especially when near optimal parameters for specific
conditions. In JEKF, parameter estimation refers to this ongoing evolution of parameters.

B.4.2. JUKF (JOINT UNSCENTED KALMAN FILTER)

JUKF extends the UKF to joint estimation scenarios. Unlike JEKF, JUKF does not linearize the process and measurement
models but instead uses a deterministic sampling technique (the unscented transform) to capture the mean and covariance
estimates. This makes JUKF more accurate in capturing the true state of a nonlinear system. JUKF also concatenates states
and parameters into a single state vector and simultaneously estimates them using the unscented transform and Kalman filter
equations.

B.4.3. JCKF (JOINT CUBATURE KALMAN FILTER)

Similar to JUKF, JCKF is designed for joint estimation of states and parameters in nonlinear systems. JCKF employs the
cubature Kalman filter, which uses cubature rules to approximate the integrals in the state and covariance propagation. This
approach avoids linearization errors and is computationally more efficient than JUKF. JCKF, like the other joint estimation
methods, concatenates states and parameters into a single state vector for simultaneous estimation.

Each of these filters - JEKF, JUKF, and JCKF - has unique characteristics and is suitable for different nonlinear estimation
scenarios in processes such as biomanufacturing.
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B.5. DEKF algorithm

This Dual EKF algorithm is a robust method for simultaneous state and parameter estimation in systems where model
dynamics are influenced by unknown or time-varying parameters. It iteratively predicts and corrects estimates based on new
measurements, adapting over time to improve accuracy. This approach is widely used in control systems, robotics, and areas
requiring real-time estimation under uncertain conditions. Here is a detailed breakdown and description of each step within
the DEKF Algorithm1:

Initialization: 1 - State Initialization: The initial state estimate, denoted as x0|0, is set to the expected value E(x0). 2 - State
Covariance Initialization: The initial covariance matrix Px0|0 of the state estimate is computed. It represents the expected
error in the initial state estimate. 3 - Parameter Covariance Initialization: Similarly, Pθ0

is initialized, representing the
covariance of the initial parameter estimates, indicating the uncertainty or variability in these initial parameter estimates.

Prediction Step for Parameters: 1 - The parameters θk|k−1 at step k given information up to step k − 1 are assumed to
be equal to the estimates from the previous step, reflecting a model where parameters do not evolve over time. 2 - The
covariance of the parameter estimates, Pθ

k|k−1, is updated by scaling the previous covariance Pθ
k−1|k−1 by a factor λ−,

which adjusts the estimate’s uncertainty.

Prediction Step for States: 1 - The state prediction xk|k−1 is calculated using the state transition function f, which predicts
the next state based on the previous state and current parameter estimates. 2 - The covariance of the state prediction, Px

k|k−1,
is updated to reflect the uncertainty due to the process noise and the propagation of the previous state’s uncertainty.

Update Step for States: 1 - The Kalman Gain for the states, Kx
k, is computed, which determines how much the measurements

taken at time k, denoted by ϵk, should impact the state estimate. 2 - The state estimate xk|k is updated using the Kalman
Gain and the measurement residual ϵk. 3 - The covariance of the updated state estimate, Px

k|k, is calculated, indicating
reduced uncertainty after incorporating the measurement.

Update Step for Parameters: 1 - Similarly to the states, a Kalman Gain for the parameters, Kθ
k , is computed. 2 - The

parameter estimates θk|k are updated using this Kalman Gain and the measurement residual. 3 - The covariance of the
updated parameter estimates, Pθ

k|k, is updated to reflect the new level of uncertainty post-measurement.

Additional Mathematical Details: i) ϵk represents the innovation or measurement residual, which is the difference between
the actual measurement and the predicted measurement. ii) Various Jacobian matrices (Fk, Hk, Hθ

k) are used to linearize
the nonlinear state transition and measurement functions around the current estimates, which is a key aspect of the EKF
methodology.
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Algorithm 1 DEKF Algorithm
1)Initialize
x0|0 = E(x0)
Px0|0 = E[(x0 − x0|0)(x0 − x0|0)T ]
Pθ0

= E[(θ0 − θ0|0)(θ0 − θ0|0)T ]
2) Prediction step of parameters
θk|k−1 = θk−1|k−1

Pθ
k|k−1 = λ−Pθ

k−1|k−1

3) Prediction step of states
xk|k−1 = f(xk−1|k−1,θk|k−1)

Px
k|k−1 = FkPx

k−1|k−1 + Px
k−1|k−1FT

k + Q
4) Update step of states
Kx

k = Px
k|k−1HT

k (HkPx
k|k−1HT

k + R)−

xk|k = xk|k−1 + Kx
kϵk

Px
k|k = (I − Kx

kHk)Px
k|k−1

5) Update step of parameters
Kθ

k = Pθ
k|k−1HθT

k (Hθ
kPθ

k|k−1HθT
k + Rθ) −

θk|k = θk|k−1 + Kθ
kϵk

Pθ
k|k = (I − Kθ

kHθ
k)P

θ
k|k−1

where ϵk = yk − h(xk|k−1) = yk − H̄xk|k−1 ;
H̄ = [1 0 ... 0]

Fk =
∂f(x,θk|k−1)

∂x |xk−1|k−1

Hk = ∂h(x)
∂x |xk|k−1

= H̄
Hθ

k = −∂ϵk
∂θ =

∂h(xk|k−1)

∂θ = H̄∂xk|k−1

∂θ |θk|k−1

B.6. Failure Case: Biomanufacturing conditions

The following conditions are prevalent in biomanufacturing and should be taken into consideration while developing Joint
or Dual NKE applications for this area:

• ODEs of UMM with Unshared Parameters: Parameters unique to one term of an ODE and not shared with other
ODEs in the UMM are typical for modeling product formation dynamics in biomanufacturing.

• P and Q with Uncorrelated Elements: Often, limited data leads to assuming error covariance matrices P (process
error covariance) and Q (measurement error covariance) with uncorrelated elements, meaning they are diagonal
with nonzero diagonal elements (noise variances) and zero off-diagonal elements. This results in two scenarios: 1)
Using P with uncorrelated elements for MRDE construction and as P(t=0) initial condition: Here, the MRDE ODEs
depend only on noise variances of Pi,i and Qi,i, and elements of Jacobian Jϕ

t . 2) Using P with correlated elements for
MRDE construction and P(t=0) with uncorrelated elements as initial condition: This can reduce time-invariant ODEs
predicting state error covariance between two state variables.

• ODEs of UMM with Weak Terms: Weak terms in an ODE have less impact on the predicted state error covariance
P(tk|k−1) compared to strong terms. The Jacobian Jϕ

t is more influenced by strong terms.

• ODEs of UMM with Weak Variables: Weak variables, present only in the first member of an ODE, do not contribute
to the computation of predicted error covariance P(tk|k−1), as their first-order partial derivatives in Jacobian Jϕt are
zero. In contrast, strong variables significantly influence P(tk|k−1) computation.

• Only One Measured State Variable: In some JEKF applications, only a single state variable is measured. This
variable determines the column of predicted state error covariance P(tk|k−1) used for Kalman gain computation. If
a row in this column is zero (no covariance between the measured and state variable), the Kalman gain for the state
variable represented by that row cannot be computed.
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These conditions emphasize the complexities and limitations in applying classical JEKF in biomanufacturing, where unique
parameter characteristics and measurement constraints can impact its effectiveness (Iglesias Jr & Bolic, 2024).

B.7. SANTO approach

The SANTO approach is designed to address the failure case of the classical Joint Extended Kalman Filter (JEKF) in
biomanufacturing scenarios. This approach specifically targets the initial condition of the Matrix Riccati Differential
Equation (MRDE), which is the initial state error covariance matrix P0 = P(t = 0). In typical situations where P0 is
composed of uncorrelated elements (Pi,j = 0), certain initial conditions of time-invariant ODEs in the MRDE are zero,
leading to zero solutions for these ODEs from tk−1 to tk. In the presence of biomanufacturing conditions, the Kalman gain
for the unshared parameter (KUP ) and the predicted state error covariance between the measured state variable and the
unshared parameter (PMSV,UP (tk|k−1)) are also zero, resulting in KUP = 0 and PMSV,UP (tk|k−1) = 0. This indicates
an unrealistic scenario where the prediction regarding the unshared parameter is considered perfect, without the need for
measurement influence in the JEKF correction step.

To avoid this failure, the SANTO approach modifies the initial condition of MRDE. Instead of considering all off-diagonal
elements of P(t = 0) as zero, a key off-diagonal element, specifically PMSV,UP (t = 0), is assigned an initial value different
from zero (PMSV,UP (t = 0) ̸= 0). This value can be a positive or negative quantity, λ, reflecting the covariance between
two variables. The choice of λ is crucial: it must be small enough to not significantly affect the filter’s estimates but large
enough to prevent the failure case.

Theorem of SANTO: The introduction of a positive quantity λ to the PMSV,UP (t = 0) in P(t = 0), initializing the MRDE
with a specific initial condition, can prevent the Kalman gain from being constantly zero throughout the JEKF execution,
thereby averting the failure case (Iglesias Jr & Bolic, 2024).

C. Proof of Theorem 3.1
Theorem 3.1 The Dual estimation of states and parameters with EKF cannot estimate an unshared parameter (parameter
evolution) that is part of a weak term in a UMM if the unshared parameter is not part of the nonlinear function that models
the unique state variable measured.

The proof of Theorem 3.1 is in the following.

Proof. Let’s consider the following:

• A general UMM with an unshared parameter in an weak term represented by a system of nonlinear differential equations
of the form:

dxmsv

dt
= f1(xmsv, x2, . . . , xn−1, θ1, θ2, . . . , θm)

dx2

dt
= f2(xmsv, x2, . . . , xn−1, θ1, θ2, . . . , θm)

...
dxn

dt
= fn(xmsv, θup)

(4)

where xmsv and x2, . . . , xn are the variables of the system, f1, f2, . . . , fn are the functions defining the system
represented by f(·), and θ1, θ2, . . . , θm are the parameters of the system and θup an unshared parameter.

• A state variables vector defined as

x = [xmsv, x2, . . . , xn]
T . (5)

• xmsv as the unique measured state variable (MSV) and H̄ = [1 0 ... 0 0].
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• R as measurement noise variance of xmsv .

• θ = [θup] , where θup as the unshared parameter (UP) to be evolved (estimated) and presented in only one weak term.

• Euler–Maruyama discretization of general UMM (Equations 4)

xk|k−1 =


xmsv,k|k−1

x2,k|k−1

...
xn,k|k−1

 =


xmsv,k−1|k−1 + f1(xmsv,k−1|k−1, x2,k−1|k−1, . . . , xn−1,k−1|k−1, θ1, θ2, . . . , θm)∆t
x2,k−1|k−1 + f2(xmsv,k−1|k−1, x2,k−1|k−1, . . . , xn−1,k−1|k−1, θ1, θ2, . . . , θm)∆t

...
xn,k−1|k−1 + fn(xmsv,k−1|k−1, θup,k−1|k−1)∆t


(6)

Given these conditions above and the DEKF Algorithm 1, we have that

Hθ
k = −∂ϵk

∂θ
=

∂h(xk|k−1)

∂θ
= H̄

∂xk|k−1

∂θ
|θk|k−1

Hθ
k = [1 0 ... 0]


d(xmsv,k−1|k−1+f1(xmsv,k−1|k−1,x2,k−1|k−1,...,xn−1,k−1|k−1,θ1,θ2,...,θm)∆t)

dθup
= 0

d(x2,k−1|k−1+f2(xmsv,k−1|k−1,x2,k−1|k−1,...,xn−1,k−1|k−1,θ1,θ2,...,θm)∆t)

dθup
= 0

...
d(xn,k−1|k−1+fn(xmsv,k−1|k−1,θup,k−1|k−1)∆t)

dθup
= ∆t

d(fn(xmsv,k−1|k−1,θup,k−1|k−1))

dθup



T

Hθ
k = [1 0 ... 0]


0
0
...

∆t
d(fn(xmsv,k−1|k−1,θup,k−1|k−1))

dθup


T

= 0.

(7)

Therefore,

Kθ
k = Pθ

k|k−1HθT
k (Hθ

kPθ
k|k−1HθT

k + Rθ) −

Kθ
k = 0

(8)

Consequently, there is no update because θk|k = θk|k−1,

θk|k = θk|k−1 + Kθ
kϵk,

θk|k = θk|k−1 + 0,

θk|k = θk|k−1.

(9)

The proof for Theorem 3.1 explains why the Dual Extended Kalman Filter (DEKF) cannot estimate an unshared parameter
in a weak term within an unstructured mechanistic model (UMM), particularly if the unshared parameter does not affect the
unique state variable measured. It shows that the ”failure” arises from the inability of the algorithm to derive any information
about the unshared parameter from the measured state variable. The Jacobian (Hθ) is derived from the relationship between
the measurement model and the parameter. Since the measurement model only references the MSV, the partial derivative
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with respect to θup is zero. Consequently, the Kalman gain (Kθ) for this parameter is also zero because it is calculated using
the covariance and the Jacobian. Given that the Kalman gain is zero, updating the parameter estimate becomes impossible,
leading to no change in the estimate. The parameter estimate remains the same, indicating that the DEKF cannot correct or
evolve the unshared parameter due to its lack of influence on the MSV.

D. UMM for Empirical Evaluation
D.1. UMM for monoclonal antibody (mAb) production

The ODE system 10 is a UMM used for Mab production (Liu & Gunawan, 2017). This system represents the cell growth,
uptake of substrates, metabolism, and production process with 16 parameters described in the Table 3. It is important to
point out that QmAb denotes the specific mAb production rate, and is an example of unshared parameter. More details can
be found in (Liu & Gunawan, 2017).

d XV

dt
= (µ− µd)XV

d Xt

dt
= µXV − klysis(Xt −XV )

µ = µmax.
[GLC]

Kglc + [GLC]
.

[GLN ]

Kgln + [GLN ]
.

KIlac

KIlac + [LAC]
.

KIamm

KIamm + [AMM ]

µd =
µd,max

1 + (Kd,amm + [AMM ])2

d [GLC]

dt
= −QglcXv

d [GLN ]

dt
= −QglnXv −Kd,gln[GLN ]

d [LAC]

dt
= QlacXv

d [AMM ]

dt
= QammXv +Kd,gln[GLN ]

QglcXv =
µ

Yx,glc
+mglc

QglnXv =
µ

Yx,gln
+mgln =

µ

Yx,gln
+

α2[GLN ]

α2 + [GLN ]

QlacXv = Ylac,glcQglc

QammXv = Yamm,glnQgln

d [mAb]

dt
= (2− γµ)QmAb.XV

(10)

Let’s break down the components of this ODE system:

1. Cell Growth and Death Dynamics:
• dXV

dt = (µ− µd)XV : This equation models the rate of change of viable cell density (XV ) over time. The growth
rate (µ) minus the death rate (µd) is multiplied by the current viable cell density.

• dXt

dt = µXV − klysis(Xt − XV ): This equation describes the total cell density (Xt), considering both viable
and non-viable cells. The rate of total cell density change is determined by the growth of viable cells and the lysis
(breakdown) of cells, where klysis is the lysis rate constant.

2. Growth Rate (µ) and Death Rate (µd):

• µ: Defined as a function of substrate concentrations ([GLC] for glucose and [GLN] for glutamine) and inhibitors
([LAC] for lactate and [AMM] for ammonium). This function reflects how cell growth rate is influenced by the
availability of nutrients and the presence of metabolic byproducts.
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• µd: The death rate, modeled as a function of the ammonium concentration, with µd,max representing the maximum
death rate and Kd,amm as a constant.

3. Substrate Consumption and Metabolite Production:

• The following set of equations (d[GLC]
dt , d[GLN ]

dt , d[LAC]
dt , d[AMM ]

dt ) represent the rates of change in concentrations of
glucose, glutamine, lactate, and ammonium, respectively. These are key substrates and metabolites in the cell culture.
The terms Qglc, Qgln, Qlac, Qamm denote specific consumption/production rates of these components, and Kd,gln is
the degradation constant for glutamine.

4. Balancing Equations for Substrate Consumption and Product Formation:

• The equations relating QglcXv,QglnXv,QlacXv,QammXv establish relationships between growth rate, substrate
consumption, and metabolite production rates. These are based on yield coefficients (Yx,glc, Yx,gln, Ylac,glc, Yamm,gln)
and maintenance coefficients (mglc,mgln, α2).

5. Monoclonal Antibody (mAb) Production:

• d[mAb]
dt = (2− γµ)QmAb.XV : This equation models the rate of mAb production. The specific mAb production rate

(QmAb) is multiplied by the viable cell density and a factor considering the growth rate, where γ is a constant.

The model’s strength lies in its ability to capture the interplay between cell growth, nutrient consumption, metabolite
accumulation, and product formation, which are crucial for optimizing and monitoring biomanufacturing processes. The
parameter QmAb, representing the specific mAb production rate, is particularly notable as it’s an unshared parameter,
meaning its value is unique to this process and not shared with other models or components within this system.

E. Empirical Evaluation - Extension
E.1. Synthetic dataset development - mAb production

The Synthetic dataset (SD) is composed of three runs (A-SD, B-SD, and C-SD). The runs have different samples regarding
the state variables Xv, GLC, GLN, LAC, AMM, and mAb and were generated using the UMM D.1 with three set of
different parameters (Table 3), and the same initial condition (Table 4). The runs were generated using the UMM proposed
by (Liu & Gunawan, 2017) (see Section D.1) with small variations in the parameters µmax (Maximum growth rate) and
QmAb (mAb specific production rate) (see Table 3), but with the same initial concentrations of states variables (viable
cell density (Xv), glucose (GLC), glutamine (GLN), lactate (LAC), ammonium (AMM) and mAb), and with different
conditions of pH and Temperature as done in the synthetic dataset of (Narayanan et al., 2020). The run A-SD (red lines in
plots of Figure 1) was generated using the original parameters proposed by (Liu & Gunawan, 2017), that are the parameters
µmax = 5.8× 10−9(h−) and QmAb = 7.21 (×10−9 mg cells−1h−1). Run B-SD (black lines in plots of Figure 1) has the
maximum cell expansions and maximum of mAb (titer) production of SD, and they were obtained with the parameters
µmax = 7.5 × 10−9(h−) and QmAb = 9.21 (×10−9 mg cells−1h−1). On the other hand, the run C-SD (brown lines in
plots of Figure 1) has the minimum cell expansions and minimum mAb (titer) production, and they were obtained with
the parameters µmax = 5× 10−9(h−) and QmAb = 4.21 (×10−9 mg cells−1h−1). Furthermore, the runs B-SD and C-SD
have samples regarding XV (cell/L) with Gaussian white noise, and they were created by adding the Gaussian white noise
with standard deviation of 20×107 to the data represented in blue and green lines. The Xv of B-SD and C-SD with noise is
highlighted in light grey and in orange in the first plot. It is important to point out that XV samples with Gaussian white noise
represent a possible online measurement with sensor including noises. These noises are used to evaluate the performance of
the NKEs to estimate mAb and QmAb.
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Table 3. Initial parameters used in UMM case D.1 to generate the runs A-SD, B-SD and C-SD of Synthetic Dataset (SD).
Parameter Name run A-SD run B-SD run C-SD
µmax(h

−) Maximum growth rate 5.8×10−2 7.5×10−2 5×10−2

kglc(mM) Monod constant glucose 7.5×10−1 7.5×10−1 7.5×10−1

kgln(mM) Monod constant glutamine 7.5×10−2 7.5×10−2 7.5×10−2

kIlac(mM) Monod constant lactate for inhibition 1.72×102 1.72×102 1.72×102

kIamm(mM) Monod constant ammonium for inhibition 2.85×101 2.85×101 2.85×101

µd,max(h
−) Maximum death rate 3.0×10−2 3.0×10−2 3.0×10−2

Kd,amm(mM) Monod constant ammonium for death 1.76 1.76 1.76
Klysis(h

−) Breakdown of cell membranes 5.51×10−2 5.51×10−2 5.51×10−2

YX,glc(cells mmol−) Yield coefficient cell conc./glucose 1.06×108 1.06×108 1.06×108

mglc(mmol/cells h) Glucose maintenance coefficient 4.85×10−14 4.85×10−14 4.85×10−14

YX,gln(cells/mmmol) Yield coefficient cell conc./glutamine 5.57×108 5.57×108 5.57×108

α1(mmols cells− h−) Coefficient for mgln 3.40×10−13 3.40×10−13 3.40×10−13

α2(mM) Coefficient for mgln 4.0 4.0 4.0
kd,gln(h

−) Monod constant glutamine for death 9.6×10−3 9.6×10−3 9.6×10−3

Ylac/glc(1) Yield coefficient lactate/glucose 1.4 1.4 1.4
Yamm/gln(1) Yield coefficient ammonium/glutamine 4.27×10−1 4.27×10−1 4.27×10−1

γ constant parameter 4.27×10−1 4.27×10−1 4.27×10−1

QmAb(mg cells− h−) mAb specific production rate 7.21×10−9 9.21×10−9 4.21×10−9

Table 4. Initial conditions of state variables of UMM case D.1.
State Variable Name Value
Xv Viable cells density 2 × 108 c/mL
Xt total cells density 2 × 108 c/mL
GLC Glucose 29.1 mM
GLN Glutamine 4.9 mM
LAC Lactate 0 mM
AMM Ammonium 0.31 mM
mAb Monoclonal Antibody (titer) 80.6 mg/L
QmAb Specific production rate of mAb 7.21 ×10−9 mg cells−1h−1
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E.2. NKEs design to address RQ1 and RQ2

The process model (based on UMM case D.1) and joint state variable vector used by NKEs (JEKF-Classic, JUKF-Classic,
JCKF-Classic, JEKF-SANTO, JUKF-SANTO and JCKF-SANTO) are the following:

ψ(t)case4 = [XV , Xt, GLC,GLN,LAC,AMM,mAb,QmAb]T , (11)

and

d

dt



XV

Xt

GLC
GLN
LAC
AMM
mAb
QmAb


=



fXV

fGLC

fGLN

fLAC

fAMM

fmAb

0


+ ω(t). (12)

The P(t=0) that were used by the NKEs with run B of Synthetic Dataset are in Tables 5, 6, and 7. Furthermore, the P(t=0)
that were used by the NKEs with run C of Synthetic Dataset are in Tables 10, 11, and 12. It is important to point out that in
case of run B-SD, we applied the SANTO approach by adding a small positive quantity to PXv,QmAb and PQmAb,Xv

, and
in case of run C-SD we added a small negative quantity to PXv,QmAb and PQmAb,Xv

, see Tables 5, 6, 7, 10, 11, and 12.

The R and Q used by the NKEs (for runs B of Synthetic Dataset) are presented in Tables 9 and 8. Furthermore, The R and
Q used by the NKEs (for runs C of Synthetic Dataset) are presented in Tables 14 and 13.

It is important point out that all NKEs used a R, P(t=0), and Q that were obtained by by trial and error until achieve positive
results in the Normalized Innovations Squared Chi-square Test.

Table 5. Standard initial state error covariance matrix (standard P(t=0)) for JEKF-Classic, and JEKF-SANTO with run B of Synthetic
Dataset.

Parameter Name Pi,i for JEKF-Classic Pi,i for JEKF-SANTO
PXv,Xv

(c2/mL2) Viable cells 0.00 0.00
PXt,Xt

(c2/mL2) Viable cells 0.00 0.00
PGLC,GLC (mM2) Glucose 0.00 0.00
PGLN,GLN (mM2) Glutamine 0.00 0.00
PLAC,LAC (mM2) Lactate 0.00 0.00
PAMM,AMM (mM2) Ammonium 0.00 0.00
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00 0.00
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 3.9e-18 3.9e-18
PXv,QmAb (c2/mL2)(g cells−1h−1) Initial Cov(Xv, QmAb) 0.0 0.8404
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Table 6. Standard initial state error covariance matrix (standard P(t=0)) for JUKF-Classic, and JUKF-SANTO with run B of Synthetic
Dataset.

Parameter Name Pi,i for JCKF-Classic Pi,i for JCKF-SANTO
PXv,Xv

(c2/mL2) Viable cells 0.00001 0.00001
PXt,Xt (c

2/mL2) Viable cells 0.00001 0.00001
PGLC,GLC (mM2) Glucose 0.00001 0.00001
PGLN,GLN (mM2) Glutamine 0.00001 0.00001
PLAC,LAC (mM2) Lactate 0.00001 0.00001
PAMM,AMM (mM2) Ammonium 0.00001 0.00001
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00001 0.00001
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 0.01 10000.01
PXv,QmAb (c2/mL2)(g cells−1h−1) Initial Cov(Xv, QmAb) 0.0 3.1e-1

Table 7. Standard initial state error covariance matrix (standard P(t=0)) for JCKF-Classic, and JCKF-SANTO with run B of Synthetic
Dataset.

Parameter Name Pi,i for JCKF-Classic Pi,i for JCKF-SANTO
PXv,Xv (c2/mL2) Viable cells 0.00001 0.00001
PXt,Xt (c

2/mL2) Viable cells 0.00001 0.00001
PGLC,GLC (mM2) Glucose 0.00001 0.00001
PGLN,GLN (mM2) Glutamine 0.00001 0.00001
PLAC,LAC (mM2) Lactate 0.00001 0.00001
PAMM,AMM (mM2) Ammonium 0.00001 0.00001
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00001 0.00001
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 0.01 10000.01
PXv,QmAb (c2/mL2)(g cells−1h−1) Initial Cov(Xv, QmAb) 0.0 2.9e-1

Table 8. Measurement noise variance R and error covariance matrix of process model (Q) for the JEKF-Classic, JUKF-Classic and
JCKF-Classic with run B of Synthetic Dataset.

Parameter Name JEKF-Classic JUKF-Classic JCKF-Classic
R2 (c2/mL2) Viable cells MNV 1 (20× 107)2 (20× 107)2 (20× 107)2

QXv,Xv (c2/mL2) Viable cells PNV 2 (20× 106)2 (20× 106)2 (20× 106)2

QXt,Xt (c
2/mL2) Viable cells PNV 2 0.001 0.00001 0.00001

QGLC,GLC (mM2) Glucose PNV 0.001 0.00001 0.00001
QGLN,GLN mM2 Glutamine PNV 0.001 0.00001 0.00001
QLAC,LAC (mM2) Lactate PNV 0.001 0.00001 0.00001
QAMM,AMM (mM2) Ammonium PNV 0.001 0.00001 0.00001
QmAb,mAb (VG2/mL2) Monoclonal Antibody (titer) PNV 0.001 00001 0.001
QQmAb,QmAb (h−2) Specific production rate of mAb 1× 10−18 0.01 0.1

1 MNV—measurement noise value; 2 PNV—process noise value.
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Table 9. Measurement noise variance R and error covariance matrix of process model (Q) for the JEKF-SANTO, JUKF-SANTO and
JCKF-SANTO with run B of Synthetic Dataset.

Parameter Name JEKF-SANTO JUKF-SANTO JCKF-SANTO
R2 (c2/mL2) Viable cells MNV 1 (20× 107)2 (20× 107)2 (20× 107)2

QXv,Xv
(c2/mL2) Viable cells PNV 2 (80× 106)2 (20× 106)2 (20× 106)2

QXt,Xt
(c2/mL2) Viable cells PNV 2 0.001 0.00001 0.00001

QGLC,GLC (mM2) Glucose PNV 0.001 0.00001 0.00001
QGLN,GLN mM2 Glutamine PNV 0.001 0.00001 0.00001
QLAC,LAC (mM2) Lactate PNV 0.001 0.00001 0.00001
QAMM,AMM (mM2) Ammonium PNV 0.001 0.00001 0.00001
QmAb,mAb (VG2/mL2) Monoclonal Antibody (titer) PNV 0.001 0.001 0.001
QQmAb,QmAb (h−2) Specific production rate of mAb 0.001 0.001 0.001

1 MNV—measurement noise value; 2 PNV—process noise value.

Table 10. Standard initial state error covariance matrix (standard P(t=0)) for JEKF-Classic, and JEKF-SANTO with run C of Synthetic
Dataset.

Parameter Name Pi,i for JEKF-Classic Pi,i for JEKF-SANTO
PXv,Xv

(c2/mL2) Viable cells 0.00 0.00
PXt,Xt

(c2/mL2) Viable cells 0.00 0.00
PGLC,GLC (mM2) Glucose 0.00 0.00
PGLN,GLN (mM2) Glutamine 0.00 0.00
PLAC,LAC (mM2) Lactate 0.00 0.00
PAMM,AMM (mM2) Ammonium 0.00 0.00
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00 0.00
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 8.9e-18 8.9e-18
PXv,QmAb (c2/mL2)(g cells−1h−1) Initial Cov(Xv, QmAb) 0.0 -0.1805

Table 11. Standard initial state error covariance matrix (standard P(t=0)) for JUKF-Classic, and JUKF-SANTO with run C of Synthetic
Dataset.

Parameter Name Pi,i for JUKF-Classic Pi,i for JUKF-SANTO
PXv,Xv

(c2/mL2) Viable cells 0.00001 0.00001
PXt,Xt

(c2/mL2) Viable cells 0.00001 0.00001
PGLC,GLC (mM2) Glucose 0.00001 0.00001
PGLN,GLN (mM2) Glutamine 0.00001 0.00001
PLAC,LAC (mM2) Lactate 0.00001 0.00001
PAMM,AMM (mM2) Ammonium 0.00001 0.00001
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00001 0.00001
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 0.01 10000.01
PXv,QmAb (c2/mL2)(g cells−1h−1) Initial Cov(Xv, QmAb) 0.0 -1.518e-1

21



Submission and Formatting Instructions for ICML 2024

Table 12. Standard initial state error covariance matrix (standard P(t=0)) for JCKF-Classic, and JCKF-SANTO with run C of Synthetic
Dataset.

Parameter Name Pi,i for JCKF-Classic Pi,i for JCKF-SANTO
PXv,Xv (c2/mL2) Viable cells 0.00001 0.00001
PXt,Xt (c

2/mL2) Viable cells 0.00001 0.00001
PGLC,GLC (mM2) Glucose 0.00001 0.00001
PGLN,GLN (mM2) Glutamine 0.00001 0.00001
PLAC,LAC (mM2) Lactate 0.00001 0.00001
PAMM,AMM (mM2) Ammonium 0.00001 0.00001
PmAb,mAb (mg/L)2 Monoclonal Antibody (titer) 0.00001 0.00001
PQmAb,QmAb (g cells−1h−1)2 Specific production rate of mAb 0.01 10000.01
PXv,QmAb (c2/mL2)(g cells−1h−1) Initial Cov(Xv, QmAb) 0.0 -1.581e-1

Table 13. Measurement noise variance R and error covariance matrix of process model (Q) for the JEKF-Classic, JUKF-Classic and
JCKF-Classic with run C of Synthetic Dataset.

Parameter Name JEKF-Classic JUKF-Classic JCKF-Classic
R2 (c2/mL2) Viable cells MNV 1 (20× 107)2 (20× 107)2 (20× 107)2

QXv,Xv
(c2/mL2) Viable cells PNV 2 (20× 106)2 (20× 106)2 (20× 106)2

QXt,Xt
(c2/mL2) Viable cells PNV 2 0.001 0.00001 0.00001

QGLC,GLC (mM2) Glucose PNV 0.001 0.00001 0.00001
QGLN,GLN mM2 Glutamine PNV 0.001 0.00001 0.00001
QLAC,LAC (mM2) Lactate PNV 0.001 0.00001 0.00001
QAMM,AMM (mM2) Ammonium PNV 0.001 0.00001 0.00001
QmAb,mAb (VG2/mL2) Monoclonal Antibody (titer) PNV 0.001 001 0.001
QQmAb,QmAb (h−2) Specific production rate of mAb 0.001 0.01 0.1

1 MNV—measurement noise value; 2 PNV—process noise value.

Table 14. Measurement noise variance R and error covariance matrix of process model (Q) for the JEKF-SANTO, JUKF-SANTO and
JCKF-SANTO with run C of Synthetic Dataset.

Parameter Name JEKF-SANTO JUKF-SANTO JCKF-SANTO
R2 (c2/mL2) Viable cells MNV 1 (20× 107)2 (20× 107)2 (20× 107)2

QXv,Xv
(c2/mL2) Viable cells PNV 2 (20× 106)2 (20× 106)2 (20× 106)2

QXt,Xt
(c2/mL2) Viable cells PNV 2 0.001 0.00001 0.00001

QGLC,GLC (mM2) Glucose PNV 0.001 0.00001 0.00001
QGLN,GLN mM2 Glutamine PNV 0.001 0.00001 0.00001
QLAC,LAC (mM2) Lactate PNV 0.001 0.00001 0.00001
QAMM,AMM (mM2) Ammonium PNV 0.001 0.00001 0.00001
QmAb,mAb (VG2/mL2) Monoclonal Antibody (titer) PNV 0.001 0.001 0.001
QQmAb,QmAb (h−2) Specific production rate of mAb 0.001 0.001 0.001

1 MNV—measurement noise value; 2 PNV—process noise value.
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