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Abstract
One of the objectives of Continual Learning is
to learn new concepts continually over a stream
of experiences and at the same time avoid catas-
trophic forgetting. To mitigate complete knowl-
edge overwriting, memory-based methods store
a percentage of previous data distributions to be
used during training. Although these methods
produce good results, few studies have tested
their out-of-distribution generalization properties,
as well as whether these methods overfit the re-
play memory. In this work, we show that al-
though these methods can help in traditional in-
distribution generalization, they can strongly im-
pair out-of-distribution generalization by learn-
ing spurious features and correlations. Using a
controlled environment, the Synbol benchmark
generator (Lacoste et al., 2020), we demonstrate
that this lack of out-of-distribution generalization
mainly occurs in the linear classifier.

1. Introduction
Continual Learning (CL) aims to develop models and train-
ing procedures capable of learning continuously through a
stream of data (Delange et al., 2021). As opposed to the
well-studied static setting of feeding the model with inde-
pendent and identically distributed (IID) data, in CL, each
experience has its distribution with a possible drift among
tasks.

Given this distribution drift, one of the main challenges of
CL is catastrophic forgetting (McCloskey & Cohen, 1989).
The latter refers to the process by which a model forgets to
solve previously learned tasks when new experiences come
in. In this context, replay-based methods provide a powerful
and straightforward tool to counter catastrophic forgetting
by storing and revisiting a subset of samples from previously
learned tasks. These methods have achieved state-of-the-art
results in a wide array of continual learning scenarios and
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benchmarks (Chaudhry et al., 2019; Buzzega et al., 2020).

Despite successful results, previous works have argued that
memory-based methods are prone to overfitting (Lopez-Paz
& Ranzato, 2017; Verwimp et al., 2021). By only storing a
subset of previous distributions, the model only reinforces
concepts and ideas that are present in the buffer, depending
on how much previous distributions are represented. To
reinforce useful concepts, the buffer should accurately rep-
resent the whole training distribution. However, if the buffer
represents only a small percentage of the training distribu-
tion, it will start learning spurious correlations and will lose
its generalization capabilities.

We argue that compositionality is a critical factor for CL.
However, spurious correlations in the data can lead the
model to learn incorrect compositions of specific concepts,
thus impairing generalization. In this paper, we show that,
even if a model can learn to identify useful concepts to make
a proper classification, the classifier will learn shortcuts
that hurt out-of-distribution generalization (OOD); shortcuts
that help increase performance in the IID dataset and are
amplified by memory-based methods. However, as a result,
they increase the generalization gap between IID and OOD
examples.

In this paper, we develop a controlled setting that tests out-
of-distribution generalization beyond the training distribu-
tion. We evaluate a basic CNN model on a set of exam-
ples that depart from the training distribution by including
unseen combinations of latent and target variables. And
we show that replay falters in this setting, giving further
evidence that replay-based methods have a toll on general-
ization capabilities not seen on traditional machine learning
benchmarks that test only the IID test set. Here we propose
an approach to test how OOD and spurious correlations af-
fect memory-based methods and hope our results influence
future studies to focus on improving the performance of CL
in OOD data.

2. Related Work
Memory-based methods address catastrophic forgetting by
incorporating data from previous tasks into the training
process (Lopez-Paz & Ranzato, 2017; Buzzega et al., 2020).
Most methods save samples from previous experiences to be
used in the current task (Rebuffi et al., 2017; Chaudhry et al.,
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2019), hoping these can be a good representation of past
distributions and maintain performance. Previous research
suggests that rehearsal would result in over-fitting, affecting
generalization (Lopez-Paz & Ranzato, 2017; Verwimp et al.,
2021). However, other researchers suggest the opposite
(Chaudhry et al., 2019), making this issue still an open
question (Peng et al., 2023).

One way to tackle the problem of generalization in machine
learning is compositionality (Hupkes et al., 2020; Lake,
2019). Compositional representations refer to decomposing
concepts in their sub-parts. Learning these representations is
useful, as these can be recombined to create novel concepts
or make sense of new experiences (Hurtado et al., 2021;
Mendez & Eaton, 2022; Veniat et al., 2021). Previous works
have used compositionality to this effect (Loula et al., 2018;
Lake, 2019; Chen et al., 2020; Akyürek et al.). In CL,
Ostapenko et al., 2021 uses explicit compositions of neural
modules as a way to reuse knowledge from previous tasks
to solve new ones and show this approach increases the
model’s generalization capabilities.

3. Experimental Setting
The common practice in CL dictates that, for each expe-
rience, the distribution of training and test sets follows a
similar distribution, and changes in the distributions take
place with new experiences. However, in an uncontrolled
setting, changes in the distribution of a known experience
can occur as it is almost impossible to completely represent
the full distribution with a subset of samples, e.g., sample
selection bias (Quiñonero-Candela et al., 2008). To tackle
this issue, we aim for testing the generalization capabilities
of a model in OOD set together with the IID test set. This
new set should present similar characteristics to the train-
ing set, but with a systematically different distribution, e.g.,
leaving out some combination of concepts.

In CL, we assume that each experience t of the sequence
follows a distribution Pt(yi|xi, zi), where yi is the label,
xi is the input, and zi are a group of characteristics pre-
sented in the input. In a classification task, the objective
is to minimize the function Lt(fΘ(x

t
i), y

t
i) for every ex-

perience of the sequence, meaning that the model f must
learn parameters Θ that find relevant characteristics from
zi that generalize to solve the current and future task using
only information from the input. However, as it has been
shown in previous studies (Geirhos et al., 2020; Ming et al.,
2022), it is common that the model uses shortcuts and learns
spurious features that help the model solve the task with-
out generalizing to OOD samples. To test this, we follow
a strategy used in systematic and compositional general-
ization research (Lake & Baroni, 2018; Ruis et al., 2020;
Kim & Linzen, 2020; Keysers et al., 2020), and propose the
creation of an OOD test set to quantify the ability of the
model to generalize to examples that drift from the training

distribution.

To test OOD generalization, we must know which attributes
z are useful for solving a particular task. Ideally, a model
should be able to correctly identify relevant features zg and
irrelevant features zb. In this paper, we will assume that a
model with proper OOD generalization properties can cor-
rectly identify those relevant features and combine them to
solve the task. In contrast, a model relying on spurious cor-
relations is one that can correctly encode relevant features
but incorrectly extracts this information or uses irrelevant
features for solving the task.

We create a dataset where we control every characteristic z
that generates an image. We identify one of these charac-
teristics as the label y, a group of relevant features to solve
the task zg, and the rest as irrelevant features. In order for
the model to be effective, it must identify features zg and
combine them to correctly identify y. We expect that even
with missing combinations of y, zg from the training set, a
robust model that is able to identify y and zg independently
can extrapolate its knowledge correctly to solve the task
despite the absent combinations.

For the CL scenario, we create the sequence following a
domain incremental setup (Van de Ven & Tolias, 2019),
each experience contains every class and a different domain
distribution. Each experience will have a disjoint group
of features zg present. For every experience t, t1, t2 ∈
{1, 2, ..., E}, zt = {ẑ0, ẑ1, ..., ẑ|zt|}, where zt1 ∩ zt2 =
∅,∀t1 ̸= t2. We create a test set that follows the same distri-
bution Pt(yi|xi, zi) of each experience. In addition to the
test set, we built a second set, which we call a generalization
set, to test the OOD generalization capabilities of the model.
This is achieved by holding out a number of combinations of
features-label tuples (zj , yj) ∈ Gt from being given to the
model during training Pt(zj , yj) = 0,∀t ∈ E. An example
of the training and testing scenario generated can be seen in
Fig. 1.

4. Experimental Set-up
4.1. Benchmark

We leverage the Synbol benchmark framework (Lacoste
et al., 2020) to quickly create a synthetic dataset composed
of images of different characters with various sizes, posi-
tions, fonts, colors, and backgrounds. Figure 2 shows ex-
amples of the characters generated. This benchmark allows
us to access the relevant features or latent variables z used
to generate each image. Thus, allowing us the flexibility to
create a task like the one described in the previous section.

We use the font prediction task for our experiments, i.e., the
font is the task-relevant factor. For the creation of experi-
ences, we use English non-diacritic characters as the feature
z to partition the dataset, this choice reduces the similarity
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Figure 1. Illustration of the generated continual learning task by
dividing the train set by the selected latent variable, the character
present. The IID test set is sampled from the union of all train-
ing distributions. And the OOD test set uses combinations of
character-font not present during training to test for non-spurious
generalization. It is important to note that even if a combination
character-font is not present in the training set, every all fonts are
present in every task.

Figure 2. Examples of character images generated by the Synbols
generator, and used in our training set. Our task uses these images
to predict the font present on them.

between domains. We sample 10, 000 images in total, made
from 10 fonts and 10 characters. These images are used to
create the splits sets, namely train and, IID and OOD test.

We create five different CL scenarios by dividing the
dataset into different numbers of tasks T , namely T ∈
{1, 2, 4, 5, 10}. When T = 1, the scenario consists of the
static setting and we use it for comparison. Each task t is
created by assigning a number of characters to it and as-
signing all training examples with that character to that task.
For example, when T = 5, since we only have 10 different
characters, each experience contains 2 unique characters.

The OOD test set is produced by a distribution of samples
that is not seen during training. For this, we set aside one
font per character for our generalization test set, producing
10 font/character combinations. This help us understand
how well a model can compose information about the char-
acter and the font it extrapolates to unseen combinations.

4.2. Memory Replay

For the CL experiments, we use the Avalanche library
(Lomonaco et al., 2021), and the Experience Replay
(Chaudhry et al., 2019) method. Because we want to test
generalization capabilities, we only use this simple method
with reservoir sampling memory buffer (Vitter, 1985). In
order to compare IID generalization versus OOD, we vary
the size of the memory using 50, 100, 250, 500, and 1000.

To run the experiments, we use a 6-layer CNN network
which we optimize using the Adam optimization algorithm
(Kingma & Ba, 2015) with a learning rate of 4 · 10−4 and
a cross-entropy classification loss. We performed a hyper-

parameter search such that we were able to replicate results
from the original paper (Lacoste et al., 2020).

5. Results
5.1. Continual Learning Generalization

The first thing we aim at assessing is how generalization is
affected when we use a memory-based method in different
CL scenarios. As a baseline, we train the model using the
entire training set, which we call static training, and we
can observe a gap between the accuracy achieved in the
static setting and different levels of memory size in Figure

IID Test OOD Test

static none 50 100 250 500 1000
Memory Size

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

static none 50 100 250 500 1000
Memory Size

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

 D
ife

re
nc

e

2 Tasks

static none 50 100 250 500 1000
Memory Size

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

static none 50 100 250 500 1000
Memory Size

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

 D
ife

re
nc

e

4 Tasks

static none 50 100 250 500 1000
Memory Size

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

static none 50 100 250 500 1000
Memory Size

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

 D
ife

re
nc

e
5 Tasks

static none 50 100 250 500 1000
Memory Size

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

static none 50 100 250 500 1000
Memory Size

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

 D
ife

re
nc

e

10 Tasks

Figure 3. Bar chart for the performance (accuracy) on the IID and
OOD test sets (left) and the absolute difference between both
(right), for a different number of tasks (2, 4, 5, 10). Looking
at the graph on the left we can see it is possible to match the
performance on the IID test set to the static setting using memory,
but not the generalization set. We can also notice that by increasing
the memory size, the difference between both performances also
increase.
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3. As expected, we need a proper representation of the
training distribution to achieve similar results, otherwise, it
will overfit to a subset of the training set.

If we look at the gap between IID and OOD test sets, we see
that as the memory size increases the IID performance in-
creases until it achieves similar results to the static training.
However, OOD remains lower, displaying a generalization
gap between both, as shown in Figure 3 (right). Also, longer
training sequences need larger memories to match the per-
formance of static training. Suggesting that memory replay
lacks the means to generalize to OOD data and focuses its
performance to know distributions.

5.2. Representation Inspection

To understand where the spurious correlations are being
learned, we test the representations learned for features
known to be relevant to the task. We use a linear probe,
keeping the model fixed and training it to detect these fea-
tures. We show that the learned representations have the
necessary information to solve the main task, since training
the probe with IID and OOD data it obtains good perfor-
mance in both IID and OOD test sets. This is shown in
Figure 4(b) in light blue and blue respectively. This sug-
gests that is the classifier the one unable to make use of
the information correctly to solve the task. However, when
training only with IID data, there is still a big gap between
the IID and OOD test set, as shown in Figure 4(a). This gap
is similar to one presented in the previous section, and the
fact that replay memory size seems not to affect this gap
suggests replay is producing its effect by reducing overfit-
ting in the IID set on the classification layer, in contrast to
the representation layers of the model.

Similar to the previous experiments, we can test how much
information about the characters the representation encodes,
shown in Figure 4(a) for IID (light green) and OOD (green)
test sets. The behavior is similar to the font probe, there
exists a gap between IID and OOD performance when train-
ing with IID data only. Although smaller, a clear gap of
generalization exists. This suggests the model is encoding
information from the domain, but not confusing spuriously
these two features.

5.3. Testing for Flat Modeling

Looking at the previous results, we can see that the model
produces features with the ability to solve and generalize in
a compositional way, but it is not doing so. Our hypothesis
is that the classifier is to blame for realizing these spurious
relationships between character and font in such a way that
there is no comprehension of compositionally between fea-
tures. To test this, we flatten the problem and treat each
font-character combination as an independent class. In this
way, it is possible to verify if the model is actually learning
to represent the combination or if it represents each concept
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(a) Probe trained on IID data.
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(b) Probe trained on IID + OOD data.

Figure 4. Result for IID and OOD test accuracy of the font (light
blue and blue respectively), char (light green and green respec-
tively) and font/char (light red and red respectively). On the left,
we have results by training the probe only with the IID training set,
on the right we have the results when training with IID + OOD
training set.

separately so that the classifier can then combine them.

In Figure 4(a) and 4(b) we can observe that the model is
able to solve the flatten task, but only when training with
the corresponding combination. When training only with
the original training set, the accuracy in the OOD test set is
zero. However, when training with both sets, IID and OOD,
the accuracy of the OOD test set is almost 100%, light red
and red respectively.

6. Conclusion and future work
Memory-based methods have shown high performance in
various CL scenarios. However, the generalizability of these
models is rarely tested. In this work, we show that these
methods can only generalize in the limited context provided
by the buffer only with enough memory size and that for
OOD elements the performance is low. We believe it is
essential to expand these types of studies to better compre-
hend these techniques and then propose alternatives that
can generalize out-of-distribution. In future work, we seek
to propose new methods that are capable of better-taking
advantage of learned representations to increase their ability
to generalize.
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A. Appendix
A.1. Character representation

In the results, we show that the model can obtain good results when training a linear probing to identify the character.
this shows that the model has the information within the representation to solve the task. However, since we work in a
continuous environment, it is important to know when the model obtains the relevant information to solve the task.

In Figure 5, we can observed that the model is capable of accumulating knowledge. Even though the performance without
memory is worse, it is important to note that the model is capable of good performance, both for the IID and OOD tests.

0 1 2 3 4 5 6 7 8 9
Experience

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Abs Test Mem Size=0
Sys Test Mem Size=0

Abs Test Mem Size=500
Sys Test Mem Size=500

Figure 5. Character probing Accuracy after each experience for the 10 task scenario.

A.2. Probing Methodology

Using the representations at various stages of the model, we trained a linear probe to test the information stored in these. We
used a linear two-layer perceptron, the SGD with momentum training algorithm. We used a grid-search over the hidden
layer size, {16, 32, 64, 128, 256}, and learning rate {10−1, 5 · 10−2, 10−2, 5 · 10−3}, for model selection.

We use the probe to understand how much information exists in the model representation when trained in different scenarios.
Figures 4(a) and 4(b) show a summary of the results. Here we show more clearly each of the results.

Figures 6 and 7 show the performance of applying the probe for the font task with the training distribution, IID, and the
complete distribution, IID + OOD, respectively.

Figures 8 and 9 shows the performance of applying probing for the character task with the training distribution, IID, and the
complete distribution, IID + OOD, respectively.

Figures 10 and 11 show the performance of applying probing for the character task with the training distribution, IID, and
the complete distribution, IID + OOD, respectively.
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Figure 6. Result of the font probing task using the training data distribution, and testing on the IID (blue) and OOD (orange) test set.
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Figure 7. Result of the font probing task using the complete data distribution, IID + OOD, and testing on the IID (blue) and OOD (orange)
test set.
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Figure 8. Result of the char probing task training with only the train distribution, IID. Testing on the IID (blue) and OOD (orange) test set.
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Figure 9. Result of the char probing task using the complete data distribution, IID + OOD. Testing on the IID (blue) and OOD (orange)
test set.
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Figure 10. Result of the char/font probing task using the training set. Note that the result achieved in the OOD test are zero because the
models haven’t seen any data with that label during training. Similar to previous figures, IID is blue and OOD is orange.
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Figure 11. Result of the char/font probing task using the complete data distribution, IID + OOD. Testing on the IID (blue) and OOD
(orange) test set.


