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Abstract
The Black-Scholes equation is famous for pre-
dicting values for the prices of Options inside the
stock market scenario. However, it has the lim-
itation of depending on the estimated value for
the volatility. On the other hand, several Machine
learning techniques have been employed for pre-
dicting the values of the same quantity. In this
paper we analyze some fundamental properties of
the Black-Scholes equation and we then propose
a way to train its free-parameters, the volatility
in particular. This with the purpose of using this
parameter as the fundamental one to be learned
by a Machine Learning system and then improve
the predictions in the stock market.

1. Introduction
The Black-Scholes equation was derived originally with
the purpose of doing predictions about the fair price of
an Option inside the stock market (1; 2; 3). The predic-
tions were possible after designing a portfolio containing
the option price and a derivative of it, such that the random
fluctuations of the market, reflected inside the prices of the
Options, get cancelled (2; 3). The cancellation of the ran-
dom fluctuations then allows us to construct a differential
equation, able to make the corresponding predictions. The
Black-Scholes equation has two free-parameters, they are:
1). The interest rate. 2). The volatility. While the interest
rate is normally given, the volatility is normally estimated
and it is, in general, difficult to predict. Several studies
about the BS equation and its properties have been done.
In (2), The Hamiltonian formulation of the BS equation
was done. In (4; 5), the symmetries of the BS Hamilto-
nian, as well as the mechanism of spontaneous symmetry
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breaking were analyzed. In (6), it was demonstrated that the
Merton-Garman (MG) equation emerges naturally from the
BS equation, after imposing the local symmetry conditions
under changes of the prices of a stock. This is an important
statement because the MG equation was created thinking
on improving the predictions based on the fluctuations in
volatility. The solutions of the BS equation, normally used
for predicting the prices of Options, has an input variables
the strike price of the Option, the time to maturity, price of
the underlying security and the free-parameters. The interest
rate and volatility also appear as parameters for the solution.
Investors using the BS equation for doing predictions in the
market, intend to estimate the volatility and then compare
it with the Implied one (1). On the other hand, recent de-
velopments in Machine/Deep learning, allow us to make
predictions by collecting data and then identifying patterns
which can be used for learning parameters. In this paper
we analyze some important details about the BS equation,
and then we focus on the volatility parameter. If a machine
learning system is created for doing predictions in the stock
market, it should be able to tell the investors when to buy or
sell and Option. For this purpose, it should be able to make
predictions not only about the Implied value of the volatility,
but also about the estimation based on different time scales.

2. The Black Scholes equation
The Black-Scholes equation can be expressed in a Hamilto-
nian operator form as (2)

HBSψ(S, t) = Eψ(S, t). (1)

Here HBS is the Hamiltonian operator corresponding to the
Black-Scholes equation. ψ(S, t) is a function representing
the prices of the Options as a function of the stock price S
and of the time t. Explicitly, the BS Hamiltonian is given by

ĤBS = −σ
2

2

∂2

∂x2
+

(
1

2
σ2 − r

)
∂

∂x
+ r, (2)

where
S = ex, −∞ ≤ x ≤ ∞, (3)

represents the prices of the stocks. In eq. (2), σ is the
volatility and r is the interest rate. While the interest rate is
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easy to fix, the volatility is normally difficult to estimate (1).
In fact, different persons could estimate different values for
the volatility of the same Option under the same conditions
(1). No matter what is the estimated value for the volatility,
the dynamic of the BS system is determined by the relation
between σ and r, which represent the free-parameters of the
BS equation.

3. Symmetries and important parameters of
the Black-Scholes equation

The symmetries of the BS equation have been analyzed pre-
viously in (4). Of particular interest, are those symmetries
which are satisfied by the Hamiltonian but violated by the
ground state. The ground state for the BS system, is defined
as

ĤBS |S >= 0, (4)

which in the space of prices is just < x|ĤBS |S >= 0, with
x being the variable defined in eq. (3). It has been proved
that while the Hamiltonian is invariant under changes of the
prices of the stock, here represented as p̂ = ∂

∂x , still this
operator does not annihilate the ground state and then

p̂|S > ̸= 0. (5)

This means that although p̂ is a conserved operator, and then
satisfying [ĤBS , p̂] = 0 (Symmetry of the Hamiltonian),
still p̂ is not a symmetry of the ground state, which is re-
flected by the result (5). In physics, this type of phenomena
is called Spontaneous Symmetry Breaking and it has several
applications in condensed matter physics, material science
and high energy physics (7). The consequences and interpre-
tations of this phenomena inside the financial market, was
carried out in (4; 5). Finally, an important result was derived
recently, where it was demonstrated that the BS equation as
well as the MG equation, are equivalent locally (6).

4. Equivalence between the Black-Scholes
equation and the Merton-Garman: THe
importance of volatility

We can now analyze the behavior of the BS Hamiltonian
under local transformations involving changes of the prices
of the stock. We can take a local transformation under the
changes of prices as U = eωθ(x). Here θ(x) is a variable
depending on x, which also depends on the price of the
stock S as the eq. (3) suggests. If the operator U were a
symmetry of the system, then it would satisfy the condition
[ĤBS , U ] = 0 (8; 9). However, it is possible to demonstrate
that this is not the case here after using the Hamiltonian
given in eq. (2). In fact, if we use eq. (2), together with the
definition of the local changes in price, then we have

[ĤBS , U ] ̸= 0. (6)

After some calculation, it is possible to demonstrate that
in order to get an exact symmetry under local changes of
the prices (U = eωθ(x)), then the BS Hamiltonian needs
to add certain terms inside its definition in eq. (2). Under
the action of the local transformation U = eωθ(x), the BS
Hamiltonian is changed as

ĤBS → ĤBS +
σ2ω(1 + ω)

2

(
∂θ(x)

∂x

)2

+

σ2ω

(
∂θ(x)

∂x

)
∂

∂x
+ ω

(
1

2
σ2 − r

)
∂θ(x)

∂x
. (7)

Then the BS equation does not satisfy the gauge symmetry
under changes of prices defined through the transformation
U = eωθ(x). For restoring the gauge-invariance, we have
to extend the standard derivative in eq. (2), such that it
becomes a covariant derivative. Without loss of generality,
here we will define the covariant derivative as

∂

∂x
→ ∂

∂x
+ p̂y. (8)

Here we interpret p̂y as the momentum associated with the
stochastic volatility. After replacing the ordinary derivative
with the covariant derivative in eq. (2), we obtain

ĤBS → Ĥ =
σ2

2
(−p̂x − p̂y) (p̂x + p̂y)

+

(
1

2
σ2 − r

)
(p̂x + p̂y) + r. (9)

The minus sign difference in the first term appears because
the momentum associated to the changes of prices, as well
as the momentum associated to the changes on the stochastic
volatility are both non-Hermitian quantities, satisfying then
the conditions

p̂+x =
∂

∂x

+

= − ∂

∂x
, p̂+y =

∂

∂y

+

= − ∂

∂y
. (10)

Here the index + means Hermitian conjugate operation.
After an expansion, the equation (9) becomes

Ĥ = −σ
2

2
p̂2x +

(
1

2
σ2 − r

)
p̂x − σ2

2
p̂2y − σ2p̂xp̂y

+

(
1

2
σ2 − r

)
p̂y + r. (11)

The gauge invariance under a general transformation of
the form U = eωθ(x,y) for the new financial Hamiltonian
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defined in eq. (11) is guaranteed if the following conditions
are satisfied (

∂θ

∂x

)2

=
ω

1 + ω

(
∂θ

∂y

)2

,(
∂θ

∂x

)
p̂x =

(
∂θ

∂y

)
p̂y,

∂θ

∂x
+
∂θ

∂y
− 4

∂2θ

∂x∂y
=

2r

σ2

(
∂θ

∂x
+
∂θ

∂y

)
. (12)

These conditions are obtained after checking the invariance
of eq. (11). In this way the changes due to local trans-
formations of the new terms appearing in eq. (11), cancel
exactly the additional terms appearing in eq. (7). Note that
interestingly when σ2 = 2r, then ∂2θ

∂x∂y = 0. This condition
corresponds, additionally, to the Hermiticity condition for
the BS Hamiltonian. Independent of the values taken by
the free-parameters of the system, as far as we can obtain
the correct function θ(x, y), the gauge invariance of the
Hamiltonian (11) is satisfied. The Hamiltonian defined in
eq. (11) is the Merton-Garman Hamiltonian if we redefine
the parameters appropriately as follows

ζ2 = e−2y(α− 3
2 ),

ρζ = e−y(α− 3
2 ),

r = λe−y + µ. (13)

These expressions guarantee the equivalence of the Hamilto-
nian in eq. (11) and the MG Hamiltonian (2). It is interesting
to notice that the relations in eq. (13) give us the conditions
ρ = ±1, which are the extreme conditions for the param-
eter ρ. In the standard analysis of the MG equation, the
parameter ρ respects the following condition

−1 ≤ ρ ≤ 1. (14)

Then for the BS and the MG equations to be connected
through gauge invariance under changes of the prices of
the stock market system, as far as we define the covariant
derivative as in eq. (8), then the MG parameter ρ can only
take the extreme values. In this way, the white noises related
to the time evolution of the stock price and volatility, satisfy
the following conditions

< R1(t)R1(t
′) >=< R2(t)R2(t

′) >= ± < R1(t)R2(t
′) >,

(15)
when the gauge invariance connects the BS and the MG
equations (2; 4; 6). Finally, we must remark the interesting
connection between the interest rate r and the volatility
coefficients λ and µ inside eq. (13). In this way, when the
BS and the MG equations are connected through the local
symmetry transformations, the interest rate and the volatility
are related through the parameters λ and µ.

4.1. The dynamical origin of the volatility

In order to analyze the dynamical origin of the volatility, we
have to analyze the vacuum or ground state of the system.
In (4), the general vacuum condition suggested a relation of
the form

ϕyvac =

(
λe−y + µ− ζ2

2 e
2y(α−1)

r − ey

2

)
ϕxvac, (16)

Under the assumptions done in this paper, this previous
condition gives the result ϕxvac = ϕyvac. The result (16)
is based on the general martingale state definition (2; 4).
Although we could in principle work around the vacuum
definition given in eq. (16), the appearance of the volatility
inside the ground state definition, would make it difficult
to visualize the mechanism behind the dynamical origin of
the mass for the volatility. Then in this section, instead of
considering the martingale state as a function of price (x)
and volatility (y), we consider it as a function of the price
only. Then we get

< x|V̂ (x, y)|S >= V (S) = −2

(
r − ey

2

)
ϕxϕ

2
y+rϕ

2
xϕ

2
y,

(17)
which ignores the term < x|p̂y|S >= ∂S(x, t)/∂y = 0
since in this special case, we are taking S(x, t) (martingale
state) as a state independent of y. Eq. (17) gives us the
ordinary Martingale condition which is the same for the BS
and MG cases. The ground state in eq. (17) is obtained from
the condition ∂V/∂ϕx = 0, obtaining then (4)

ϕvac = 1− σ2

2r
. (18)

Then the field ϕx can be expanded around this ground state
as

ϕ(x) = ϕvac + ϕ̄(x). (19)

For understanding the effect of this field redefinition, we
need to introduce the result (19) inside eq. (17). In this way,
we get

< x|V̂ (x, y)|S >= V (S) = −2

(
r − ey

2

)
(ϕvac +

ϕ̄(x))ϕ2y + r(ϕvac + ϕ̄(x))2ϕ2y. (20)

From this expression, we obtain some terms of the form
ϕvacϕ

2
y which represent the dynamical origin of the mass of
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the volatility field ϕy. More explicitly, the expression (20)
becomes

< x|V̂ (x, y)|S >= V (S) =(
−2

(
r − ey

2

)
+ rϕvac

)
ϕvacϕ

2
y + .... (21)

Naturally, if ϕvac vanishes, then the massive term corre-
sponding to the volatility field vanishes. This demonstrates
that the dynamical origin of the volatility mass emerges
from the relation between the parameters σ and r in eq.
(18). Since in the MG equation σ2 = ey, then the phe-
nomena is even more interesting than in standard situations
because it involves non-linearities. Then the volatility field,
generates its own mass dynamically because its influence ap-
pears inside the definition of the vacuum state ϕvac. Finally,
since the terms in eq. (21) correspond to the second-order
terms of the expansion of the price and volatility fields as
it was done previously in (4; 5), then the kinetic terms in
eq. (11), do not have contributions to the dynamical origin
of the volatility mass, at least not at second-order. If we
consider higher-order terms in the expansion, still the same
arguments used for obtaining the result (21) work. The
behavior of the kinetic terms for the MG equation, at all
orders, was analyzed in (4).

5. Implied volatility vs. Estimated value of the
volatility

After understanding the importance of the volatility inside
the predictions of the prices of stocks and Options, in this
section we proceed to explain how the volatility is estimated
by the investors and then compared with its implied value.
The implied value is normally the value of volatility match-
ing with the data, like the one obtained from Yahoo-Finance
(10). In other words, the Implied volatility is just the value
of the volatility, such that after being substituted inside the
BS equation, it brings out as a result the Option price ob-
served in the market (11). For that purpose, we use the
solutions of the BS equation, defined as

C = SN(d1)−Ke−r(T−t)N(d2), (22)

for the Call Option. For the Put Option, analogue results are
obtained (1). It can be proved that eq. (22) is a solution of
the BS equation defined through the Hamiltonian (2) in eq.
(1). In eq. (22), S is the stock price, K is the strike price, T
is the maturity time for the European Call-Option andN(d1)
andN(d2) are standard Normal distributions, which depend
on the parameters d1 and d2. d1 and d2 are defined in (1)
and they depend on the previously mentioned variables plus
the volatility and interest rate. Note that eq. (22) cannot be
solved trivially for the volatility σ and then iterative methods
are applied for finding the Implied volatility. An example

Figure 1. Yahoo finance charts showing the values of certain vari-
ables for the most traded stocks. The Implied volatility has to
match these values by following the BS equation (10).

Figure 2. Yahoo finance charts for Options with the highest Implied
volatility (10).

of the charts analyzed for getting the values of the Implied
volatility can be seen in the figures (1) and (2). In general,
once we know the value of the Implied volatility, we then
compare with our estimated value of the volatility which
could be based on daily, monthly or annual data. Once the
Implied volatility, as well as the estimated volatility are
expressed in the same time scale, then we compare their
values. For understanding better this aspect, here we will
illustrate an example taken from (1) and repeated here for
clarifying the way how the investors decide how to decide
whether or not they buy an Option. Suppose that the value
of a European call Option on a non-dividend paying stock is
3,67 USD when S=33,K = 30, r = 0, 05 and T−t = 0, 25
years (three months). The Implied volatility would be the
value of σ, such that when we introduce it inside the BS
solution in eq. (22), together with the given values for S, K,
r and T − t, gives us as a result the value for the Call Option
C = 3, 67 USD per share. It is not difficult to realize that
the process is iterative. The result for this example, gives
a volatility of 22% per annum. This result is taken from
data of the charts, after solving σ in eq. (22). On the other
hand, let’s assume that the investor thinks that the volatility
will be 1, 5% per day. Then we have to convert this daily
estimation to an annual value. The formula to apply is
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Figure 3. The relation between the prices of a Stock and the prices
of an Option in agreement with the BS equation. Taken from (12).

σannual = σday
√
Dyear, (23)

where Dyear is the number of trading days in a year. If we
use this formula, then we get

σannual = 1, 5
√
256 = 24%, (24)

where we have assumed that there are 256 trading days
in a year (Taking into account that the trading cannot be
done everyday). From the standard theory we know that the
higher the volatility of an Option is, the higher is its value.
Since the investor estimates a volatility of σestimated =
24%, which is a larger value than the estimated volatility,
then he will certainly invest on the Option value. Then in
general, if our estimated volatility is higher than the Implied
volatility, then definitely we should buy the Option. On the
other hand, if our estimation of volatility is smaller than
the Implied value, then the investors should not buy the
Option. The Machine Learning system will substitute the
human part which estimate the values of volatility. The idea
is to improve our capability for doing good decisions at
the moment of investing. Then the difficulty of a Machine
learning system, at the moment of predicting whether to
invest or not, is on the comparison between the values taken
by the different volatilities, namely, the estimated and the
implied. In advance, there are some software and algorithms
already working on these predictions, but still with some
limitations. For instance, in the figure (3), it is illustrated
the relation between the prices of an Option and the prices
of the underlying stock. This relation depends on a series
of variables and parameters, being the most difficult to deal
with, the volatility.

6. Conclusions
In this summary paper we have introduced the model which
we are using for analyzing the Implied volatility of the
Option market for different stocks. The model is based on
the BS equation and the decisions for investing or not over
a stock, are based on comparisons over the estimated value
of the volatility, which is in general different from the value
taken by the implied volatility. The challenge of a machine
learning system is to deal with this difference, being able
to make predictions for both values of volatility, and then
making subsequent comparisons. The main purpose of this
paper, is to reduce the problem of supervised learning to a
single parameter. In future research papers, we will explore
the Machine learning techniques, ideal for improving the
predictions in the market, based on the volatility values.
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