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Abstract
Convolutional neural networks (CNNs) are widely
recognized for their effectiveness in computer vi-
sion tasks, but their spatial information capturing
ability does not directly apply to tabular datasets
lacking spatial correlation. In this paper, a tai-
lored approach called Expanded CNN (ExCNN)
is proposed for tabular data analysis. Unlike com-
mon practices of transforming tabular data into
images or using transformer architectures, Ex-
CNN enhances feature dimensionality through a
fully connected layer, harnessing the benefits of
complex neural networks adapted to the tabular
data domain. The performance of ExCNN is eval-
uated on various datasets, comparing it to existing
architectures and benchmarking against Gradient
Boosted Decision Trees. While no universally
superior solution emerges, ExCNN demonstrates
promise by leveraging the advantageous charac-
teristics of CNNs for tabular data, outperforming
certain deep learning architectures in specific met-
rics.

1. Motivation
In recent years, Convolutional Neural Networks (CNNs)
have demonstrated great success in image analysis. How-
ever, non-image (tabular) data is prevalent in various fields,
including bioinformatics (Bayat, 2002; Zhu et al., 2015),
medicine (Topol, 2019; Rajkomar et al., 2018), and finance.
While CNNs have shown excellent modelling capacity for
image data, it is not always feasible to apply them directly
to tabular data. This has led to the development of methods
that transform tabular data into images to explicitly repre-
sent feature relationships (Sharma et al., 2019; Zhu et al.,
2021; Bazgir et al., 2020; Ma & Zhang, 2018). However,
such methods do not always preserve the spatial locality
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property, which is crucial for extracting meaningful feature
representations.

The current state-of-the-art approach for tabular data prob-
lems centers around ensembles of decision trees, specifi-
cally Gradient Boosting Decision Tree (Friedman, 2001),
which has consistently proven to be a popular choice
in various machine learning competitions. Renowned
GBDT libraries such as XGBoost, LightGBM, and Cat-
Boost (Prokhorenkova et al., 2018) are widely adopted by
machine learning researchers and practitioners. In recent
years, there has been a notable surge in the development of
deep learning models specifically designed for tabular data:

• (Arik & Pfister, 2021) with TabNet, that uses sequential
attention and conventional feed-forward modules.

• (Badirli et al., 2020) with GrowNet, an architecture
based on Gradient boosted and weaks MLPs

• (Klambauer et al., 2017) with SNN, an MLP-like ar-
chitecture with the SELU activation.

• (Popov et al., 2019) with NODE, an ensemble of deci-
sion trees

• (Wang et al., 2021) with DCN, an MLP module and a
combination of linear layers and multiplications.

• (Song et al., 2019) with AutoInt, transforms features
to embeddings and applies attention-based transforma-
tions.

• (Prokhorenkova et al., 2018) with CatBoost, a GBDT
implementation that uses oblivious decision trees

In fact, several studies have endeavored to categorize these
models into three main groups: shallows, differentiable
trees, and attention-based models (Gorishniy et al., 2021).
Research such as the one cited above has served as inspi-
ration for us to conduct a fair comparison of our model
against the aforementioned existing architectures. These
studies have demonstrated that a straightforward ResNet-
like architecture can be an effective baseline for tabular data
analysis.

We summarize the contributions of our paper as follows:
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• We propose a Expanded CNN network without trans-
forming tabular data into images or generating complex
embedding process.

• We thoroughly evaluate the main models for tabular
Deep Learning models on a diverse set of tasks to
investigate their relative performance.

• We reveal that our ExCNN model demonstrates
promise by capitalizing on the advantageous charac-
teristics of CNNs adapted for tabular data. In specific
metrics, it outperforms certain families of deep learn-
ing architectures employed in tabular data methods

2. Proposal: Expanded Convolutional Network
for Tabular Data

We can explore the possibility of utilizing a one-dimensional
convolutional layer to apply a Convolutional Neural Net-
work (CNN) to a tabular dataset. However, it is important to
note that this layer assumes a spatial locality correlation be-
tween features, implying that adjacent columns are expected
to exhibit spatial correlation. Unfortunately, this assumption
does not hold true for most tabular datasets, as we typically
lack prior knowledge about the spatial relationships between
the columns. Therefore, directly feeding a collection of tab-
ular data into a convolutional layer would not be appropriate,
as the tabular entities lack spatial correlation. To address
this, we propose incorporating an additional layer in our ap-
proach to reorder the tabular data, enabling its compatibility
with the subsequent convolutional layer.

Introducing ExCNN network designed specifically for tab-
ular data analysis. The network architecture begins by ex-
panding the input size (number of rows) through a fully
connected standard layer (depicted in green) see Figure 1.
This layer then transforms into ’C’ channels, each contain-
ing ’S’-size signals or Sx1-size images. To clarify, each
signal represents a collection of S ordered characteristics,
and we have C groups encompassing various combinations.
It is worth noting that the values observed in the Sx1 sig-
nals are not direct replicas of the original characteristics,
but rather a result of nonlinear combinations. Subsequently,
the features are extracted using a series of one-dimensional
convolutional layers, bolstered by the incorporation of two
skip connections to prevent performance degradation. Fi-
nally, the extracted features are utilized in predicting targets
through a fully connected layer. Our model configuration
boasts a setting of C = 128 and S = 8, based on a random
tuning process using optuna library, providing an optimal
setup for effective tabular data analysis.
We consider supervised learning problems. Where D =
(xi, yi)

n
i=1 denotes a dataset, where xi = (xnum

i , xcat
i ) ∈ X

represents numerical xnum
i and categorical xcat

i features and
yi ∈ Y denotes the corresponding label. We consider three

Table 1. Dataset properties.

Dataset Num. fea-
tures

Classes Metric Abbreviation

California Housing
(Kelley Pace & Barry, 1997) 8 - RMSE CA
Adult
(Kohavi, 1996) 6 2 Accuracy AD
Jannis
(Guyon et al., 2019) 54 4 Accuracy JA
Higgs
(Baldi et al., 2014) 28 2 Accuracy HI
Covertipe
(Blackard & Dean, 1999) 54 7 Accuracy CO
Year
(McFee et al., 2012) 90 - RMSE YE
Yahoo
(Chapelle & Chang, 2011) 699 - RMSE YA
Microsoft
(Qin & Liu, 2013) 136 - RMSE MI
Kaggle’s Hospital
Israelita Albert Einstein
(Albert, 2020) 111 2 Accuracy COV

types of tasks: binary classification Y = {0, 1}, multiclass
classification Y = {1, ...,m} and regression Y = R.

Finally we formalize the “ExCNN” architecture in Equation
1

Row = (xnum
i , xcat

i ) ∈ Xd
n

T = expand
[
xnum
1 , ..., xcat

3 , ..., xcat
n

]
∈ Xd×S

n

R = reshape [T ] ∈ XS×1×C
n

ExCNN(R) = Residuals+

Pooling(Conv(Pooling(Conv(...(R)))))

(1)

3. Experiments
3.1. Datasets

We leverage a collection of nine distinct public datasets,
carefully chosen for our experimentation. Each dataset
undergoes a singular train-validation-test split, ensuring
consistency across all algorithms employed. To provide
an overview of these datasets, we present a summarized
depiction in the accompanying Table 1.

3.2. Implementation

Data preprocessing plays a crucial role in the effectiveness
of deep learning models. To ensure a fair comparison among
all deep models, we applied the same preprocessing tech-
niques to each dataset. For regression targets, we standard-
ized the data across all algorithms. Categorical features
were handled differently depending on the algorithm used.
For CatBoost made use of its built-in support for categor-
ical features. In the case of our model and other neural
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Figure 1. ExCNN network for tabular data. First, the input size (rows) is increased through a fully connected standard layer (green). This
layer is then resized into C channels containing S-size signals (or Sx1-size images).

networks, we utilized embeddings of consistent dimension-
ality for all categorical features. Hyperparameter tuning
is an essential step in optimizing model performance. For
each dataset, we conducted a thorough tuning process for
every model’s hyperparameters. To achieve this, we uti-
lized the Optuna library (Akiba et al., 2019), which employs
Bayesian optimization techniques. Additionally, we iterated
over predefined sets of configurations recommended by cor-
responding papers to ensure comprehensive exploration of
the hyperparameter space.

3.2.1. NEURAL NETWORKS

To ensure a comprehensive evaluation of our model across
different datasets, we employ specific optimization tech-
niques tailored to the nature of the problem at hand. For
classification tasks, we minimize cross-entropy, while for
regression tasks, we utilize mean squared error as the ob-
jective function. In line with the original implementations
of TabNet and GrowNet, we adopt the Adam optimizer pro-
posed by (Kingma & Ba, 2014). Conversely, for all other
algorithms, we utilize the AdamW optimizer introduced
by (Loshchilov & Hutter, 2017), without incorporating any
learning rate schedules.

Regarding batch sizes, we adhere to a predefined value for
each dataset, unless specific instructions are provided in
the corresponding papers. The training process continues
until there have been no improvements on the validation
set for patience + 1 consecutive epochs. For all algorithms,
we have set the patience value to 10, ensuring a consistent

approach across the board.

3.3. Evaluation

To obtain reliable results, we conduct a evaluation process
for each tuned configuration. This involves running a to-
tal of 12 experiments using different random seeds. By
performing multiple iterations, we mitigate the impact of
random initialization and provide a comprehensive assess-
ment of our model’s performance on the test set. Table 2
shows the results for all architectures including our model.

4. Conclusion
From the results presented in Table 2, it is evident that
ResNet proves to be a highly effective baseline. However,
our ExCNN model consistently outperforms other models
on numerous tasks, establishing itself as a powerful solution
in the field of tabular data analysis.

Notably, NODE and SNN demonstrate high performance on
multiple tasks as well. However, it is worth mentioning that
these models, although more complex than ResNet, share
similarities with it. Furthermore, they are not truly ”single”
models, often comprising a significantly larger number of
parameters compared to ResNet and ExCNN, and exhibiting
an ensemble-like structure.

This study serves as a validation of the predictive capabil-
ities of ExCNN, a novel model that leverages the unique
characteristics of complex neural networks, such as CNNs
adapted for tabular data. Our approach surpasses other deep
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Table 2. Results for models, for each dataset, top results are in bold. The metric values averaged over 12 random seeds are reported.

METRIC DATASET DL MODELS
MLP RESNET GROWNET DCN2 AUTOINT SNN NODE CATBOOST EXCNN

A
C

C
U

R
A

C
Y AD 0.843 0.856 0.847 0.861 0.859 0.854 0.857 0.873 0.868

JA 0.701 0.728 - 0.718 0.721 0.709 0.727 0.724 0.732
HI 0.713 0.732 0.709 0.721 0.725 0.722 0.716 0.728 0.698
CO 0.962 0.954 - 0.966 0.934 0.961 0.958 0.910 0.970

COV 0.853 0.841 0.827 0.801 0.793 0.787 0.843 0.868 0.873

R
M

S
E

CA 0.476 0.493 0.455 0.484 0.474 0.493 0.464 0.428 0.478
YE 8.853 8.831 8.827 8.890 8.882 8.889 8.931 8.885 8.901
YA 0.757 0.742 0.765 0.765 0.768 0.768 0.773 0.749 0.752
MI 0.747 0.728 0.751 0.749 0.750 0.762 0.745 0.744 0.760

learning solutions across a range of tasks, eliminating the
need for intricate feature embedding processes commonly
employed in deep learning models.

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data
mining, pp. 2623–2631, 2019.

Albert, H. I. Diagnosis of covid-19 and its clinical spec-
trum, 2020. URL https://www.kaggle.com/
datasets/einsteindata4u/covid19. Ac-
cessed on April 10 , 2023.
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