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Abstract

In this paper we propose the use of a deep learning
based model for inferring astrophysical informa-
tion of binary black hole (BBH) systems from
observed gravitational wave (GW) signals. We fo-
cused in estimating the total mass of BBH systems
M using a convolutional neural network regres-
sion (CNNR) model. We built a large dataset of
2D images representing the time-frequency evo-
lution of BBH GW signals which are embedded
in noise, where for each generated image the real
total mass is known. A hold-out cross-validation
procedure was performed to train and evaluate
five architectures of CNNR models with different
number and sizes of kernels The results indicate
that the proposed deep neural network models for
regression provide reliable point-parameter esti-
mations with high accuracy. This estimation pa-
rameter approach can be easily extended to recon-
struct more parameters from astrophysical sources
directly from obseved GW events.

1. Introduction

Gravitational waves (GW) are ripples in the fabric of the
space-time that were predicted more that one-hundred years
ago by Albert Einstein in the general relativity theory. These
waves are produced by exotic faraway astrophysical mas-
sive objects such as binary black holes (BBH) and core-
collapse supernovae (CCSN) and carry novel and unique
information of its source and the universe. For a century,
GW were merely a theoretical aspect until very recently
first detections were finally achieved. GW are detected in
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earth by the highly sensitive network of ground-based laser-
interferometer observatories LIGO, VIRGO and KAGRA
(LVK), which register the minuscule strain signals induced
by traveling GW (Aasi et al., 2015; Acernese et al., 2015).
The firt GW event detected in 2015, named GW150914 (Ab-
bott et al., 2016), along with the around ninety GW detected
so far (Abbott et al., 2021) from BBH and one from a binary
neutron stars (BNS) system, are remarkable discoveries that
open a new whole spectrum to understand of the universe.

There are three main aspect that allowed the discovery of
GW and the beginning of a new astronomy. First, the theo-
retical solutions of Einstein’s equations and the understand-
ing of their physical meaning. Second, the LVK network
of detectors, which involves sophisticated high-tech facil-
ities that are sensible to the tiny GW signals and provide
data to search for such signals. Third, the computational
methods and the data analysis algorithms devoted to detect
GW signals embedded in noise, to localize the sources in
the sky, and to extract physical information of the source.
This last aspect is essential for GW astronomy and there are
still plenty of open problems such as detection of GW with
stochastic or unknown signatures (i.e, detection problem),
discrimination between noise artefacts and GW signals (i.e.,
classification problem), inferring physical information of
the source (i.e., estimation problem), among others. Conse-
quentially, computational intelligence methods can play a
critical role to tackle those problems.

Currently, estimation of physical information from BBH
given the data of detected GW is performed with Bayesian
inference based methods, which employs stochastic sam-
pling techniques to compute the joint posterior distribution
of the system’s parameters such as the masses and spins
of the individual black holes for the case of BBH systems.
However, sampling methods are known to be extremely ex-
pensive since they require highly computational processing
times and associated costs. Moreover, application of such
methods is a complex task that requires experience in its
usage to correctly tune and run the algorithms. These issues
are critical for GW astronomy since one is expected to per-
form rapid and reliable parameter estimation as soon as new
data is available from new GW events. Machine learning
(ML) and deep learning (DL) methods provide unique op-
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portunities to address these issues, in particular, to perform
rapid and reliable estimation of physical information.

In this paper we propose the novel use of DL, in particular
convolutional neural network regression (CNNR) models, to
estimate physical information of BBH systems from the data
of GW signals detected with the LVK network of detectors.
We built a large dataset of GW signals from BBH embedded
in noise with known physical parameters. In particular, we
focused in the estimation of the total mass of the BBH,
Mr = M; + My, where M, and M, are the masses of
the two black holes. The input to our CNNR model is a
2D image representing the time-frequency evolution of the
observed data while the output is Mp. We implemented
several architectures of CNNR consisting of convolutional
layers with different number and sizes of the processing
kernels and with different number of neurons and layers in
the fully connected neural network. The CNNR model were
evaluated with a hold-out cross-validation procedure and the
results revealed reliable point-parameter estimations with
very low errors.

2. Methods

2.1. Problem statement: inferring physical information
of BBH from GW

The LVK network of GW detectors provides time-series of
strain data which is firstly used to search for GW signals.
Once a GV is detected, we want to infer information of
source that generated such signal. For the case of BBH
systems, examples of physical parameters are the masses
and spins of the black holes, the sky localization, and the
source distance. In this work, rather that estimating the two
masses we focused in the total mass of the BBH system,
M = My + M5 where M, and M5 are the masses of the
two black holes.

To define the GW parameter estimation problem, consider
the observed data from a detector in the LVK network
z(t) = [z[0],z[1],...,z[N — 1]]T. This is a N-point time-
series where there is a GW from a BBH embedded in ad-
ditive observation noise. Hence, the observed data can be
modelled as:

z[t] = wlt] + h[t; 0], t=0,1,....N —1, (1)

where w([n] is the observation noise and h[t; 0] is the
GW signal of a BBH which depends on P parameters
0 = [01,02,...,0p]. Here we are interested in a single
parameter, the total mass My of the BBH system. Our goal
is then to find the value of Mt based on the observed data

x(t).

2.2. Dataset description

To asses the CNNR model, we constructed a large dataset
with many realizations of observed data x(t) associated
with the total mass M value of the BBH system. To ob-
tain x(t), we first compute GW signal h(t) for a BBH sys-
tem with masses M7 and M;. Each GW was computed
using the offline PyCBC search pipeline (Usman et al.,
2016). We then obtain a noise realization of the LIGO
noise w(t). This is carried out using the real observed noise
data available in (https://gwosc.org). The observation is ob-
tained by simply adding the noise w(t) and the GW signals
h(t). This procedure is repeated to cover all the param-
eter space of M; and M. We consider individual BBH
masses My € [5;100] Mg and My € [5;100] Mg with
M, > Ms Mg, which yields to a parameter space for the
total mass of My,q; € [10;200] M. Note that M indi-
cates units of solar masses. We sampled M7 and M5 with a
resolution of 1 Mg, which results in a total of 4656 pairs of
M7 and M5 values.

For each observation () we compute the time-frequency
representation X (¢, f) based on the spectrogram technique.
This provides a 2D data matrix of dimensions N, x N,
where N, and N, represent the number of rows and
columns, respectively. As a result, we obtain the dataset
D = {X(t, f), ML}N |, where Xi(t, f) € RN™Ne,
M. € [10,200], and N is the total number of images. In
total we created a dataset with N = 4656 images and each
image has a dimension of N,, = N, = 28.

2.3. Convolutional Neural Networks for regression
(CNNR)

As a novel approach for estimating the value of parameters
for BBH systems we propose to use of DL (LeCun et al.,
2015), in particular, a CNNR model that calculates the total
mass. The choice of a CNNR model is motivated by the
fact that they can learn linear and non-linear relationships
between the input and output, they are more appropriate
for handling large-dimensional input data, and they offer
high performance at a low computational cost to make pre-
dictions. The input to the proposed CNNR model is a 2D
image X (t, f) representing the time-frequency evolution of
the observed data while the output is a 1D parameter rep-
resenting the total mass M. The architecture of a CNNR
model is illustrated in figure 1 and consist of the several
processing stages.

The fist stage is a convolutional layer with N kernels or
filters of dimension m X n which are smaller than the 2D
input image. Each kernel is used to perform the convolution
operation with the input image followed by a rectified linear
unit (ReLU) operation to introduce nonlinearity to the model.
This produces N 2D feature maps.
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Figure 1. Illustration of the architecture of the CNNR models which consist of one convolutional stage, and max pooling stage, flatten,

and FCNN of one hidden layer and one-nueron output.

The next stage is a a pooling operation to decrease the di-
mension of the feature maps by sliding a filter of dimension
p X q while calculating the maximum or the average. This
is followed by a flatten stage which converts the reduced
feature maps into a single data vector to be used in the next
stage. The final stage is a fully connected neural network
(FCNN) with hidden layers and neurons on them to trans-
form the information in the feature maps into a response.
Note that more convolutional and pooling stages can be
added to form a stack of computational layers prior feeding
the FCNN. The number of convolution layers, the number
and size of the kernels, the pooling size and type, and the
number of hidden layers and the number of neurons on them
for the FCNN are tunable parameters (hyperparameters),
while the weights of the kernels and of the FCNN have to
be learned from a training data set.

We tested several models with different hyperparameters;
in especific we considered CNNR models with one, two,
and three convolutional layers, kernels of different sizes,
different number of kernels in each convolutional layer, and
FCNN’s with 32, 64, 128, 256 neurons in the hidden lay-
ers. And we found the higher estimation performance with
only one convolutional layer. Here we present the results
achieved with five CNNR models consisting of one convo-
lutional layer consisting of 8, 16, 32, 64, and 128 kernels
of size 3 x 3, pooling of size 2 x 2 using the maximum
operation, and a FCNN with consisting of one hidden layer
of 128 neurons and a single-neuron output layer with linear
activation function. The used models were named CNNI1A,
CNNI1B, CNNI1C, CNNI1D, and CNNI1E. The architecture
of these five CNNR models is illustrated in figure 1, note
that they consits if only one convolutional and pooling lay-

Table 1. Performance metrics (2, rmse and mae) obtained with
all regression models.

2

METRIC r rmse  mae
LINEAR  0.94 10.98 2.85
CNNI1A 0.96 7.45 2.29
CNN1B 0.96 7.41 2.29
CNNIC 0.96 6.92 2.19
CNNI1D 0.96 8.00 2.36
CNNIE 0.95 8.96 2.53

ers and only differ in the number of kernels Nr. The Keras
package was used to implement the CNNR, while for model
training the mean squared error was used as a loss function
and the adam optimizer, with a batch of 512 samples and
150 epocs

As baseline we also used the linear regression model to pre-
dict the total mass M as function of the input information
X(t, f) € RN™Ne where N, = N, = 28. In this case,
the linear regression model is given by:

Mrp = by + bix1 + bawg + - - - + brga®rsa ()

where, by, b1, ba, ... , b7sy4 are the parameters that need to be
learned from a training dataset.

2.4. Evaluation procedure and performance metrics

To asses the CNNR performance in the estimation of the
total mass My from x(t), we employed a hold-out cross-
validation (HOCV) procedure where the entire data set D
was randomly splitted into two mutually exclusive sets, one
for training (70%) and other for testing (30%). The train set
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Figure 2. Distribution of estimated values of the total mass M@
obatined with all models for a true total mass Mt value of 63M®.

is used to tune the CNNR model while the test set is used to
compute the performance in the estimation of M for un-
known GW signals. To asses performance we computed the
r-squared coefficient (r2) to measure the linear relationship
between the distribution of estimated values MT and the
distribution of true values Mr, and the root mean-squared
error (rmse) and the mean absolute error (mae) to measure
the average of squared errors and the average of absolute
errors across true values M and the estimated values MT.

3. Results

Table 1 shows the values of the performance metrics ob-
tained with the linear and the five CNNR models. The 72
metric is greater than 0.94 for the models with the linear
model providing the lower linear correlation between real
and estimated values. Regarding the error metrics, rmse
and mae, all models provided low estimation errors with
the higher errors provided by the linear model. These global
results indicate that all models provided good estimation
of the unknown parameter total mass, with slightly better
performance provided by models CNN1B and CNN1C.

To examine the estimation performance for specific values
of the total mass, we analyzed the distribution of estimated
values for specific true values. For instance, figure 2 shows
the distribution of MT for the case of true total mass M
value of 63M®. All models but CNNI1C presented a My
distribution with mean and median values separated from
the true value. MLR and CNN1A provided the worse per-
formance with bias of around 10 M ©®, respectively. The
CNN1C model on the other hand presented the best estima-
tion performance with a distribution of My closely centered
at 63 M ®, indeed the bias for this model was lower than 1
M ©®. Similar results were obtained for other true values of
the true total mass M7 . Hence, the CNN1C model provided
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Figure 3. Scatter plot (upper panel) of real versus estimated values
of the total mass and the distribution of residuals (lower panel)
obtained in the CNN1C model.

the best estimation performance and was selected in the
subsequent analyses.

To further analyse the performance of the CNN1C model, in
figure 3 we present the scatter plot of Mt versus My and its
distribution of residuals (i.e., M1 — MT). The scatter plot
shows a high linear relationship between M7 and My with
a correlation coefficient of 0.96, while the distrubution of
residuals shows a bell-shaped distribution with mean value
close to zero. The only observation to consider is the high
dispersion in MT for small values of M7, which can be due
by the fact that the number of samples in the dataset is little
in those values of Mp. Irrespective of this, these results
reveal a high estimation accuracy with the CNN1C model.

4. Conclusions

In this work we propose the novel use of CNNR models to
estimate the total mass of BBH systems from GW signals
detected with the LVK network of detectors. Traditionally,
this kind of estimation problem is addressed with sampling
methods which presents several difficulties as the extremely
high computational burden and the high experience required
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to use the methods. On the contrary, our proposed CNNR
model offer several advantages. Once a model is trained
we only need to provide input data to obtain a point-wise
estimation. It is possible reconstruct of physical parameters
within a few milliseconds using a single computer. The
noise and signal models are used only to obtain data to train
the models, and not every time we want to perform esti-
mations. It is possible to consider multiple noise a signals
models in the construction of the training data set, so that,
the learned model can automatically reconstruct parame-
ters in different modelling situations. Also, it is possible to
re-train the model as new data is available.

The proposed CNNR models consists of a convolutional
layer with processing kernels, a fully connected neural net-
work, and an output neuron that provide the point-wise
estimation. The input to this model is a 2D data matrix
representing the spectrogram of the observed data while the
output is the value of the estimated parameter. As part of this
study, we constructed a data set of GW signals embedded
in observation noise with known values of the parameter,
the total mass, and we use this data set to asses the esti-
mation performance of several CNNR architectures and of
basic multiple linear regression model. The results showed
that deep learning methods can readable be used to esti-
mate information from noisy observations, with superior
performance than that of the linear model. This is possi-
bly because CNNR models can learn linear and non-linear
relationships between the input and output without any as-
sumptions. The potential limitations of our CNNR models
is not considering other wave forms in the dataset, and as
such the impossibility of not being able to estimate the M
of that type of GW.

As future work we plan to test our CNNR models on real
BBH GW signals detected by LVK network of detectors
which could further demonstrate the effectiveness and ro-
bustness in real scenarios. In addition we plan to extend
the estimation to multiple parameters of BBH systems as
the masses and the spins of the two black holes. Finally
we will consider Bayesian neural networks to incorporate
uncertainty in the predictions because in astronomy it is
important to provide confidence interval containing model
error instead of a point wise prediction.
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