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Abstract
Tree-based models are popular among regression
methods to predict continuous variables. Also,
Generalized Linear Models (GLMs) are pretty
standard in many statistical applications and pro-
vide a generalization to many of the most com-
monly applied statistical procedures. However, in
most regression tree methods, there is only one
theoretical model associated for prediction in the
final nodes, like multiple linear regression, logis-
tic regressions, polynomial models, Poisson mod-
els, among others. We, therefore, propose a new
tree method in which we estimate a GLM in each
leaf node of the estimated tree including variable
selection, new hyperparameters optimization, and
tree pruning. Our method, called Generalized lin-
ear tree (GLT), has shown to be competitive com-
pared to other well-known regression methods in
real datasets, with the advantages and estimation
flexibility provided by GLMs.

1. Introduction
A regression tree model is a nonparametric estimate of a
regression function constructed by recursively partitioning
a data set with the values of its predictor X variables (Loh
& Zheng, 2012). This way, the tree algorithm partitions
the explanatory variable domain into rectangles through a
series of decision rules, in such a way to obtain sets that
are similar between themselves. In a regression tree, it is
common to use the mean value of the regions as a prediction
for the instances that fall under this region.

Tree-based models have been extensively used in the statis-
tical practice and have been object of great attention in the
statistics literature partly due to its easy interpretability and
good performance in classification and regression tasks. De-
spite these benefits, trees are not usually as accurate as other
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methods, such as Generalized Linear Models (GLMs) and
Generalized Additive Models (GAMs) (Elith et al., 2008).
They have difficulty in modelling smooth functions, even
ones as simple as a straight-line response at 45 degrees to
two input axes.

In this paper, we propose a new methodology that incor-
porates the flexibility and predictive power of GLMs into
regression tree models. The Generalized Linear Tree (GLT)
is a supervised machine learning algorithm in which the
main idea is to partition a dataset in order to minimize the
variability of the partitions, measured by the standard devia-
tion and adjust a more sophisticated and flexible parametric
model (GLM) to each of these partitions. This way, if we
have evidence to believe that a single model adjusted to the
entire dataset is not adequate, we can generally improve the
prediction of the response variable. We use the backward
method to do the variable selection in the GLM models and
we also do a hyperparameter optimization and tree pruning
in order to avoid overfitting.

2. Related Work
Some of the most known decision/regression trees imple-
mentations are: CART (Breiman et al., 1984) and C4.5
(Quinlan, 1993), where specifically in the regression case,
the trees predict averages or medians, that is, for a given
partition, the prediction is always the same, which is an
undesirable property for some cases.

Another tree-based algorithm is the model tree, which is
an algorithm that, for regression, combines a regression
tree and a multiple linear regression (MLR), what might
yield a more effective prediction, although there is only one
theoretical model associated with this prediction (MLR).
Some implementations of model trees are M5 (Quinlan
et al., 1992) and M5’ (Wang & Witten, 1996). Rtree model
algorithms with another types of regression also exist, for ex-
ample, there is a bayesian approach of GLM (Chipman et al.,
2002), non-parametric models, Poisson model (Chaudhuri
et al., 1995), multiple linear model (Alexander & Grimshaw,
1996) and polynomial models (Chaudhuri et al., 1994).

There are classification trees with a similar idea. One exam-
ple of such algorithm is the Logistic Models Tree (Landwehr
et al., 2005), which combines a decision tree and a logistic
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regression to predict the probability of success of the classes
involved in the problem. (Zeileis et al., 2008) also incorpo-
rates a similar idea, in the sense that it is possible to use any
given parametric model in a recursive tree model. The pa-
rameters of this model are obtained via M-type estimators.

3. How the method works
The GLT goes through several steps during the training
stage, where some of these steps are similar to existent tree-
based models and some are novel to our methodology, which
is where we propose to improve the predictive performance.

The main contribution that differentiates our paper from
previous works is the greater number of models that can be
estimated, while avoiding a prohibiting computational cost
to estimate such models and doing a tree pruning procedure
and optimizing new hyperparameters to avoid overfitting.

3.1. Dataset Partitioning

The first step in the GLT model is the partitioning of the
explanatory variables space. We are going to denote this
space by S1 and the partitions by {S2, · · · , Sk} (supposing
bk/2c partitions), and the partition sets follow the rules
below:

Si = S2i ∪ S2i+1,∀i = 1, · · · , bk/2c
S2i ∩ S2i+1 = ø

For each internal node of the tree, an exhaustive search is
done in order to find the best partitions, i.e. the partitions
that maximize the V (Si) metric:

V (Si) = σi − |Si1|
|Si| σi1 −

|Si2|
|Si| σi2, i = 1, · · · , bk/2c

where |Si1|, |Si2| and |Si| are the number of observations
that belong to the the subsets Si1, Si2 e Si, respectively,
σi, σi1 and σi2 are the standard deviation of the response
variable in the subsets Si, Si1 and Si2 respectively.
The exact process to determine the subsets Si1 and Si2 given
Si depends on the type of explanatory variables, and is given
as follows.

Continuous Variables

1. For each continuous explanatory variable x, we ob-
serve its unique values and sort them. We are going
to denote by Ax the set of sorted unique values of the
variable x.

2. For each aj ∈ Ax, j ∈ 1, · · · ,#Ax − 1, we calculate
Rj =

aj+aj+1

2

3. The sets Si1 and Si2 are constructed by finding the best
Rj such that the V (Si) metric is optimized. Then:
Si1 = {Si : x ≤ Rj}
Si2 = {Si : x > Rj}

Categorical Variables

1. For each categorical explanatory variable x, let Ax be
the set of all of its factors observed.

2. For each Rj ∈ Ax, j ∈ 1, · · · ,#Ax the sets Si1 and
Si2 are formed such that:
Si1 = {Si : x = Rj}
Si2 = {Si : x 6= Rj}

This process is summarized in the following pseudo-code:

Algorithm 1 Tree building
Input: training data X, y,number of subsets of the data k
for i=1 to bk/2c do

Set best separator V (Si)
if Si = ø or At least one hyperparameter condition
(e.g. max. depth) is not satisfied then
S2i = ø and S2i+1 = ø

else
S2i = Si1 and S2i+1 = Si2

end if
end for

3.2. Recursive model selection

Once the tree structure is build, GLMs are adjusted to all
the leaf nodes. The distribution of the response variable Y
to be adjusted has to belong to the exponential family:

f(y;φ, θ) = exp{a(φ)−1[yθ − b(θ)] + c(y, φ)}∀φ, θ ∈ Θ

Then the expectation of Y is related to the linear predic-
tor through g(µ) = xTβ. This way, we can predict the
response variable through the inverse function of the GLM
link function: ŷ = g−1(xT β̂).

We also added new hyperparameters that are not standard
in the known tree algorithms, for example: (1) minimum
percentage decrease in the response variable’s standard devi-
ation in each partition and (2) minimum quantity of models
to be adjusted in each node. These hyperparameters aim to
avoid overfitting.

Due to a high computational cost of adjusting several mod-
els in each node, we do a model selection procedure. This
way, we choose the best predictive models using a hyper-
parameter α ∈ (0, 1), that defines the proportion of models
that will be chosen in the next nodes so that only a subset of
models that predict the response variable well enough are
chosen.

Algorithm 2 illustrates the data partitioning process and the
recursive model selection, considering the hyperparameters
that are used as a stop criterion.
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Algorithm 2 Recursive selection models
Input: Training data X, y, α: percentage of models to
be chosen in the next node, k: number of subsets of the
data, m: number of total MLGs, τ = {1, · · · ,m}, MLG
models usedM
for i=1 to k do

if Si 6= ø then
initialize ε as an empty list of size m
for j ∈ τ do

EstimateMj(X(Si), y(Si))

ε[j] = error(y, ŷ := M̂j(X(Si)))
end for
τ = 100 ∗ α% first indices of sort(ε)

end if
end for

Figure 1. Generalized linear models adjusted in each of the 3
subsets of a dataset

Figure 1 displays some simulated data and the prediction
associated to it, where the estimated tree (shown in Figure 2)
exemplifies the exact decision nodes and the GLMs adjusted
to each of the 3 subsets rendered by the algorithm.

Figure 2. Generalized Linear Tree with 2 partition nodes.
x1 ≤ 1.95

x1 ≤ 1.55

β̂01 + β̂11x1

√
1

β̂02+β̂12x1

exp{β̂03 + β̂13x1}

Also, β̂0j and β̂1j, j = 1, 2, 3 are the maximum-likelihood
estimated parameters of the regression models in each sub-
set.

3.3. Variable Selection

The variable selection in the GLMs is based off of a mini-
mization of AIC criterion (Akaike, 1974), that is a negative
log-likelihood based function that is penalized for the quan-
tity of parameters in the parametric model. Obtaining the
best set of explanatory variables via AIC is done, in practice,
with a backwards stepwise regression in each subset.

This way, decision-makers can easily analyze the selected
variables in the model and verify which path in tree led to
the obtained prediction.

3.4. Tree pruning

The process of tree pruning is the main method to avoid over-
fitting. This procedure happens after each subset has a final
model associated with it. This simplifies the tree and make
it generally more efficient for prediction and interpretability
purposes.

The pruning is done from the bottom to the top, just as it
is in a standard decision tree. There are 2 pruning types
that can be used: (1) applies a correction in the training
error(Quinlan et al., 1992) and (2) utilizes a pruning set to
be obtained through a partition in the training set.

4. Predicting new observations
In order to do the prediction, we have to verify in which
terminal node the specific observation to be predicted falls
into. Based on the regression model in each terminal node,
the new instances can be predicted.

Figure 3. Example of an Generalized Linear Tree with estimated
coefficients

x1 ≤ 1.95

x1 ≤ 1.55

1.87 + 3.6 ∗ x1 1
6.18−3.462∗x1

exp{−2.1 + 1.796 ∗ x1}

We show below examples of predictions for some values of
x1 according to the estimated tree shown in Figure 3.

x1 Prediction
2.4 exp{−2.1 + 1.796 ∗ 2.4} = 9.12
1.75 (6.18-3.462*1.75)−1 = 8.23
3.31 exp{−2.1 + 1.796 ∗ 3.31} = 46.75
1.55 1.87+3.6*1.55=7.45



Generalized linear tree: a flexible algorithm for predicting continuous variables

5. Performance on Real Data
The main goal of this paper is to evaluate the perfor-
mance of GLT against other known algorithms in the lit-
erature. For this performance comparison, we gathered 7 re-
gression datasets from https://archive.ics.uci.
edu/ml/datasets.php.

We set our training set as 70% of the datasets and 30% for
the test set. For hyperparameter optimization, we adopted a
repeated cross-validation procedure consisting of 30 itera-
tions of random search optimization, where each one has 5
cross validations with 3 folds for all tested algorithms. In
all cases, we used the mean absolute error as the evaluation
metric.

We tested the following algorithms: Generalized Linear
Tree, Ridge Regression, Lasso Regression, Random Forest,
Regression Tree, Gradient Tree Boosting, GLM with Nor-
mal distribution, GLM with Gamma Distribution and GLM
with Inverse Gaussian Distribution.

The performance results of each algorithm is displayed in
the table below 1, where the best performance is indicated
in bold.

Table 1. Performance results in terms of absolute mean error

Algorithms Iris Auto CST RSV Parkison Qsar Energy
GLT 0.260 1.181 10.133 6.753 5.560 0.248 7.260
GLM Normal 0.325 1.378 2.105 6.210 2.040 0.300 3.215
GLM Gamma 0.322 2.174 2.805 10.406 2.694 0.300 8.741
GLM Inverse Normal 0.460 2.174 5.753 10.406 2.686 0.300 8.741
Ridge 0.272 1.223 2.172 7.251 1.930 0.266 2.323
Lasso 0.394 1.223 2.164 7.322 1.932 0.300 2.500
Random Forest 0.300 1.263 2.698 5.943 1.351 0.242 1.377
Regression Tree 0.330 1.373 3.283 6.619 1.505 0.257 1.434
Gradient Tree 0.287 1.229 2.041 5.913 0.312 0.227 1.014

6. Conclusion
In this paper, we proposed a flexible alternative algorithm,
the GLT, to solve continuous variable prediction problem.
Our algorithm mixes the idea of regression trees with Gener-
alized Linear Models. We observed that GLT outperformed
every other algorithm tested in 2 out of 7 datasets. It is
important to note that GLT outperformed the regularized
regressions (LASSO and Ridge) and the plain GLMs in
most datasets. Future research on this topic could include
testing other families of models other than Generalized Lin-
ear Models, such as other types of parametric regression,
non-linear methods and non-parametric methods.

1Some of the dataset names were abbreviated. Specifically:
Auto for Auto MPG, CST for Concrete slump test, RSV for Real
State Valuation, Qsar for QSAR fish toxicity and Energy for Energy
efficiency.
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