
Vehicle-counting with Automatic Region-of-Interest
and Driving-Trajectory detection

Malolan Vasu 1 Nelson Abreu 2 Raysa Vásquez 2 Christian López 1

Abstract

Vehicle counting systems can help with vehicle
analysis and traffic incident detection. Unfortu-
nately, most existing methods require some level
of human input to identify the Region of inter-
est (ROI), movements of interest, or to establish
a reference point or line to count vehicles from
traffic cameras. This work introduces a method to
count vehicles from traffic videos that automati-
cally identifies the ROI for the camera, as well as
the driving trajectories of the vehicles. This makes
the method feasible to use with Pan-Tilt-Zoom
cameras, which are frequently used in developing
countries. Preliminary results indicate that the
proposed method achieves an average intersection
over the union of 57.05% for the ROI and a mean
absolute error of just 17.44% at counting vehicles
of the traffic video cameras tested.

1. Introduction
In recent years, with the growing popularity of computer
vision, and the increased performance of computational
systems (Feng et al., 2019), more complex algorithms can
be run at record speeds. Following that growth and the
importance of traffic management due to population growth,
even more in developing countries, there has been increased
interest in road traffic surveillance and monitoring sytems
(Naphade et al., 2020). Vehicle counting is an integral part
of susch systems and methods have been proposed that
achive remarkable accuracy (Wang et al., 2020; Yu et al.,
2020).

In the AI City Challenge Workshop at CVPR (henceforth
AICity), many methods for vehicle counting are presented
each year (Naphade et al., 2020). Most follow a similar
three-step strategy of vehicle detection, vehicle tracking,

1Lafayette College, Easton, PA, USA 2Universidad Autónoma
de Santo Domingo, Dominican Republic. Correspondence to:
Christian Lopez <lopezbec@lafayette.edu>.

Proceedings of the LatinX in AI (LXAI) Research workshop at
ICML 2021. Copyright 2021 by the author(s).

and movement assignment from trajectory modeling and
classification. These methods leverage pre-trained object
detections and multi-object tracker models. In recent years,
object detection has made significant progress, and models
such as YOLOv4 (Bochkovskiy et al., 2020) provide remark-
able runtime efficiency and accuracy. Multi-object tracking
methods, especially those that rely on a backbone of an ob-
ject detector such as DeepSORT (Wojke et al., 2017), have
likewise matured in performance and are frequently used
for vehicle counting methods (Naphade et al., 2020). With
regards to the movement assignmet of vehicles, most of
the existing methods manually define the ROI and/or Move-
ments of Interest (MOI) as single zones, pair of entering/exit
zones, or lines (Yu et al., 2020; Abdelhalim & Abbas, 2020;
La et al., 2020; Naphade et al., 2020). Unfortunately, this
approach limits the use of these vehicle counting methods
to stationary cameras where the MOI and ROI are known a
priori and do not change.

Recently, (Youssef & Elshenawy, 2021) proposed the use
of a Region-based CNN and Feature Pyramid Networks to
count vehicles and automatically determines the ROI from
aerial video footage. While they showed promising results
at counting vehicles and detecting the ROI, they were not
able to detect unique MOI since they focused on counting
all vehicles in footage without specifying how many ve-
hicles were on a given driving trajectory. By leveraging
existing computer vision models and techniques, this work
introduces a system for vehicle counting that automatically
identifies the ROI and MOI from a traffic video footage and
the vehicle count of all the driving trajectories shown in
the video. The method does not require any additional user
input besides the video camera footage (i.e., no ROI, MOI,
or points/lines of reference). This method could find wider
uses among existing traffic cameras and even work on Pan-
Tilt-Zoom cameras, which are frequently used in developing
countries. Hence, traffic management technology that rely
on vehicle counts could benefit from this work.

2. Method
The proposed method utilizes two distinct modules that
run in a sequential unsupervised manner. An overview
is illustrated in Figure 1. An input video is fed into the

Vehicle-counting with Automatic Region-of-Interest and Driving-Trajectory Detection

ROI DeterminationObject
Detection
(YOLOv4)

Average Grid
Confidence

Cluster Grid
(DFS)

Outlier
Removal

Aggregate
Clusters

(Convex Hull)

Object Tracking
(DeepSORT)

Vehicle Counting

Outlier
Removal

Clustering
(K-means)

Rep.
Trajectory

Determination

Post-
processing

Vehicle
Counts

Raw
Video

Figure 1. The two-module framework of our system.

Object Detector, and its detections are used for both the first-
module, which determines the ROI, and the second-module,
which determines vehicle counts in driving-trajectory.

2.1. Object Detection

Prior research suggested that YOLOv4 provides the op-
timal trade-offs between speed and accuracy with a
43.5%AP (65.7%AP50) on the MS COCO dataset at a real-
time speed of ∼ 65 FPS on Tesla V100 (Bochkovskiy et al.,
2020). In this work, both cars and trucks detections found us-
ing the default YOLOv4 confidence threshold of λ1 = 0.25
were combined into just a vehicle detection class. YOLOv4
outputs bounding boxes along with confidence values for
each object detected in the camera frame used in the next
step.

2.2. ROI Determination Module

The main assumption this works makes is that the camera is
positioned such that it has maximal clarity of the ROI the
user of the camera is interested in. It follows that objects
detected in the ROI would have high detector confidence
values compared to objects farther away from or not in the
ROI.

2.2.1. AVERAGE GRID CONFIDENCE

Once all objects in a sequence of video frames are detected,
the footage area is divided into square grids of size
max((median(obj widths),median(obj heights)),
where object widths and heights refer to the bounding box
width and height for all detections throughout the video.
For every grid in the image, the average detector confidence
value for the center of detection lying in the given grid is
calculated. All grids above a threshold value λ2 = 0.75,
are selected for the next step. Detections are averaged
out over a whole grid due to increased computational
efficiency achieved by storing bounding box centers and
then approximating their area instead of computing average

confidence values at each pixel.

2.2.2. CLUSTERING OF GRIDS

Subsequently, all grids of average confidence exceeding λ2
are clustered using a simple Depth-First search (DFS) where
each grid is considered to be connected to the 9 grids around
it. This results in many connected components of grids
within the video footage area. Each cluster represents a
broad region with a sizable flow of traffic where the detector
has high confidence.

2.2.3. OUTLIER REMOVAL

Sometimes, a few vehicles may be detected at the edges
of the camera frame without much movement (e.g. parked
vehicles) but with high confidence. Clusters with area under
λ3 = 0.25 of the average cluster size are removed from
future calculations.

2.2.4. AGGREGATION OF CLUSTERS

Finally, for each of the clusters, grid cells lying on their ex-
treme edges are searched for. The four vertices of each grid
cells are then used to find the convex hull that encloses all
the clusters. This represents the total ROI of this position of
the camera frame where the detector has sufficient accuracy
and confidence. Figure 2 show an example of the output of
the ROI Determination module were the ROI is estimated
based on the confidence of the objects detected. This ROI,
along with the output of the object detector, are used in the
subsequent Vehicle Counting module.

2.3. Vehicle Counting Module

This module only considers detections within the estimated
ROI from the first-module. Using the object detections, the
object tracker stitches together trajectories for all vehicles
passing through the ROI. Trajectories are then clustered,
and a representative driving trajectory is obtained for each
cluster. Finally, the number of vehicles in each of those

Vehicle-counting with Automatic Region-of-Interest and Driving-Trajectory Detection

clusters is counted.

2.3.1. OBJECT TRACKING

To stitch together individual object detections to an ob-
ject’s track across multiple frames of the video, the
DeepSORT (Wojke et al., 2017) object tracker with a
YOLOv4 backbone is used with default parameters, ex-
cept max iou distance = 0.7 was increased to λ4 = 0.9
to minimize ID switches, which occur when the tracker in-
correctly believes a vehicle has gone out of the frame and
assigns the same vehicle a new ID. Once all trajectories are
obtained, they are clustered.

2.3.2. TRAJECTORY CLUSTERING

In this work, the k-means clustering algorithm is used with
k ∈ {2, . . . , 15}. Any video can expect to have at least
2 lanes (i.e. MOIs) and it is assumed most intersections
would not have over 15 MOIs. A silhouette-index with
a Euclidean distance measure is used and the k with the
maximum silhouette-index is chosen. Each vehicle track
is clustered using its first and last coordinates, the differ-
ence between those two, and the angle between those two
multiplied by a factor λ5 = 100 (i.e. clustering based on
position and the displacement vector). Clusters with less
than λ6 = 3 tracks are removed, each track is deleted, and
all tracks are re-clustered with the new k-value.

2.3.3. REPRESENTATIVE TRAJECTORY DETERMINATION

Having obtained k-clusters with each object’s track, they are
’averaged’ out to find the representative driving trajectory
for the cluster. In this work, a modified version of the
method introduced by (Lee & Han, 2007) for determining
the representative trajectories is implemented. Specifically,
a double-sweep method is used to compute two average
y-values, one for vectors pointing in the same direction as
~V (the average vector for all segments of the cluster), and
the other for the opposite direction. In a regular curve, this
would provide two distinct averages for when the x-value
intersects two distinct paths of the cluster thereby providing
the true representative path in most cases.

The modified implementation uses Quad-Trees to efficiently
work with 2D coordinates. Only vectors having x′ such
that |x′ − x| < ((λ7 = 5) × grid size), are searched
for potential intersections with the sweep line. The min-
imum number of lines required to intersect with a single
x-value to be considered part of the representative path
is set to λ8 = max{5, 0.05 × num tracks in cluster}.
The hyperparameter is a proportion of the number of tracks
as longer videos may have a higher proportion of outliers.
Paths in both directions of the representative path with less
than λ9 = 3 points are removed. For a smooth path, the
minimum distance between consecutive x-values is set to

Figure 2. Final vehicle counts and rep paths for cam 1.

γ = grid size.

2.3.4. POST-PROCESSING AND COUNTING

Next, outlier tracks that jump across the camera frame are re-
moved by comparing each track with the representative path
for that trajectory. When a significant deviation from the
representative path occurs, (i.e., when at least one point on
the vehicle’s trajectory is further than (λ7 = 5)×grid size
from any point on the representative path), the track is
deleted from the cluster. After the removals, the tracks
are re-clustered and representative paths are re-calculated.
Finally, the number of tracks in each cluster is calculated.

3. Experimental Evaluation
In this work, pre-trained YOLOv4 and DeepSORT models
were used to perform the experiments. All experiments
were ran on Google Colab notebooks with a two-thread
Xeon Haswell CPU with 2.3 GHz, 12GB of RAM, and a
Tesla T4 with 16GB VRAM, and are based on a subset of
the AICity 2020 Track1 dataset (Naphade et al., 2020). The
hyperparameters chosen for the experiments were based on
a qualitative understanding of the models and their applica-
tions, and not on any quantitative data or tunning.

Table 1 shows the the Mean Absolute Error (MAE) for
the vehicle counting of each video tested, as well as the
Intersection-over-Union (IoU) between the ROI estimated

Table 1. Summary of MAE and IoU scores on the validation set.

CAMERA NUM NO.OF MOIS MAE IOU

1 4 4.55% 61.54%
2 4 19.83% 28.76%
4 12 29.95% 41.25%
5 12 26.85% 46.77%
8 6 13.16% 55.28%
10 3 21.26% 32.98%
11 3 15.87% 84.32%
14 2 4.65% 72.38%
15 2 34.58% 66.00%
16 2 3.70% 81.24%

Vehicle-counting with Automatic Region-of-Interest and Driving-Trajectory Detection

and the ground truth ROI provided by AICity. The results
show that, on average, the proposed method achieved an
IoU score of 57.07% and an MAE of 17.44%. For example,
Figure 2 shows the IoU and the MAE calculation for ’cam 1’
of the dataset.

Figure 3. Rep paths for cam 5. True k = 12, predicted k = 10.

The low IoU scores could be explained by the assumption
made in this work for estimating the ROI which is not neces-
sarily followed by the ROI provided by AICity. For example,
Fig 2 compares the ROI estimated in this work and that in
AICity. In some cases the ROI provided by AICity doesn’t
have enough footage for certain paths or cover non-driving
areas (e.g., grass), hence resulting in differing outcomes.

Moreover, most counting false negatives occur due to missed
object detections and false positives due to ID switches,
which are a result of the under-performance of DeepSORT
and may require advanced methods to alleviate, as presented
in AICity(Wang et al., 2020; Yu et al., 2020). A preliminary
overview suggests that most of counting errors stem from
miscalculated k for the k-means clustering (see Figure 3).

The method currently runs at approximately 11 FPS (object
detection at approx. 20 FPS, object tracking at 28 FPS, ROI
at 581 FPS, clustering at 822 FPS) on the current system
configuration (note that object detection can reach speeds
of 65 FPS (Bochkovskiy et al., 2020) on ideal system con-
figurations), but would see much higher speeds with better
processing power.

4. Conclusion and Further Work
This paper proposes a method of vehicle counting that is
capable of automatically estimating the Region-of-Interest
and driving-trajectories of vehicles without any information
about the traffic footage. While the results are promising,
given that the method achieved an average MAE of 17.44%
without using any a priori information about the footage,
several limitations and areas of improvement still exist. As
shown in Table 1, the method’s performance has high vari-
ability across videos, possibly indicating poor generalizabil-

ity. Analysing the impact of the different hyperparameters
used, and tuning the hyperparameters on the validation set
could greatly improve generalizability and performance.
Clustering algorithms specifically suited for working on ve-
hicle trajectories could also prove useful. Future work could
also explore the possibility of allowing the model to work
in real-time and update its ROI, MOIs, and vehicle count as
new video frames are provided.

References
Abdelhalim, A. and Abbas, M. Towards real-time traffic

movement count and trajectory reconstruction using vir-
tual traffic lanes. In Proceedings of the IEEE CVPR
Workshops, June 2020.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. Yolov4:
Optimal speed and accuracy of object detection. In arXiv
preprint arXiv:2004.10934, 2020.

Feng, X., Jiang, Y., Yang, X., Du, M., and Li, X. Com-
puter vision algorithms and hardware implementations:
A survey. Integration, 69:309–320, 2019.

La, H.-P., Ha, M.-T., Nguyen, H.-L., and Nguyen, M.-T. Ve-
hicle counting: Survey and experiments. 7th NAFOSTED
NICS, pp. 350–355, 2020.

Lee, J. and Han, J. Trajectory clustering: A partition-and-
group framework. In SIGMOD, pp. 593–604, 2007.

Naphade, M., Wang, S., Anastasiu, D., Tang, Z., Chang, M.-
C., Yang, X., Zheng, L., Sharma, A., Chellappa, R., and
Chakraborty, P. The 4th ai city challenge. In Proceedings
of the IEEE CVPR Workshops, 2020.

Wang, Z., Bai, B., Xing, T., Zhong, B., Zhouqinqin, Z.,
Meng, Y., Xu, B., Song, Z., Xu, P., Hu, R., and Chai, H.
Robust and fast vehicle turn-counts at intersections via an
integrated solution from detection, tracking and trajectory
modeling. In Proceedings of the IEEE CVPR Workshops,
2020.

Wojke, N., Bewley, A., and Paulus, D. Simple online and
realtime tracking with a deep association metric. In Pro-
ceedings IEEE ICIP, pp. 3645–3649, 2017.

Youssef, Y. and Elshenawy, M. Automatic vehicle counting
and tracking in aerial video feeds using cascade region-
based convolutional neural networks and feature pyramid
networks. Transportation Research Record, 2021.

Yu, L., Feng, Q., Qian, Y., Liu, W., and Hauptmann, A. G.
Zero-VIRUS: Zero-shot VehIcle route understanding sys-
tem for intelligent transportation. In Proceedings of the
IEEE CVPR Workshops, 2020.

Vehicle-counting with Automatic Region-of-Interest and Driving-Trajectory Detection

ACKNOWLEDGMENT
This research was funded by the National Fund for Innovation and Scientific and Technological Development (FONDOCYT
for its acronym in Spanish) from the Ministry of Higher Education, Science and Technology of the Dominican Republic
(FONDOCYT 2018-19-3A1-107). Any opinions, findings, or conclusions found in this paper are those of the authors and
do not necessarily reflect the views of the sponsors. The authors would also like to thank the hard work of the Research
Assistants Orlin Cury and Manuel Garcia.

LatinX Contribution
Three of the co-authors identify themselves as LatinX. They are the Co-PIs (second and third authors) and the PI (last
author) of a grant from the Dominican Republic government. The second and third authors helped with the Experimental
Evaluation section as well as with the data management. The first and last authors worked on the proposed method and the
manuscript.

