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Abstract
Non-stationary environments are challenging for
reinforcement learning algorithms. If the state
transition and/or reward functions change based
on latent factors, the agent is effectively tasked
with optimizing a behavior that maximizes perfor-
mance over a possibly infinite random sequence
of Markov Decision Processes (MDPs), each of
which drawn from some unknown distribution.
We call each such MDP a context. We intro-
duce an algorithm that analyzes a possibly infinite
stream of data and computes, in real-time, high-
confidence change-point detection statistics that
reflect whether novel, specialized policies need to
be created and deployed to tackle novel contexts,
or whether previously-optimized ones might be
reused. We show that (i) this algorithm minimizes
the delay until unforeseen changes to a context
are detected, thereby allowing for rapid responses;
and (ii) it bounds the rate of false alarm, which is
important in order to minimize regret. 1

1. Introduction
Reinforcement learning (RL) techniques have been success-
fully applied to solve high-dimensional sequential decision
problems. However, if the state transition and/or reward
functions change unexpectedly, according to latent factors
unobservable to the agent, the system is effectively tasked
with optimizing behavior policies that maximize perfor-
mance over a (possibly infinite) random sequence of Markov
Decision Processes (MDPs). Each MDP is drawn from an
unknown distribution and is henceforth referred to as a con-
text. Designing efficient algorithms to tackle this problem is
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a known challenge in RL (Padakandla, 2020). The key diffi-
culties here result from (i) the need to quickly and reliably
detect when the underlying system dynamics has changed;
and (ii) the need to effectively learn and deploy adaptable
prediction models and policies, specialized in particular con-
texts, while allowing the agent to (when appropriate) reuse
previously-acquired knowledge.

Many existing related works tackle non-stationary problems
either by detecting when the underlying MDP changes, or
via meta-learning approaches that construct a prior model
(or policy) capable of rapidly generalizing to novel con-
texts. Hadoux et al., for example, introduced a technique
based on change-point detection algorithms to deal with
non-stationary problems with discrete state spaces (Hadoux
et al., 2014; Banerjee et al., 2017). We, by contrast, address
the more general setting of high-dimensional continuous
RL problems. Supervised meta-learning algorithms (Finn
et al., 2017) have also been recently combined with RL to
enable fast adaptation under changing domains (Nagabandi
et al., 2019a;b). Meta-learning methods typically assume
that the distribution over contexts experienced during train-
ing is the same as the one experienced during testing. We,
by contrast, do not require that contexts are sampled from a
previously-seen distribution, nor that contexts share struc-
tural similarities with previously-experienced ones.

To address these limitations, we introduce an algorithm that
analyzes a possibly infinite stream of data and computes, in
real-time, high-confidence change-point detection statistics
that reflect whether novel, specialized policies need to be
deployed to tackle new contexts, or whether a previously-
optimized policy may be reused. We call our algorithm
Model-Based RL Context Detection, or MBCD. We for-
mally show that it minimizes the delay until unforeseen
changes to a context are detected, thereby allowing for rapid
responses, and that it allows for formal bounds on the rate
of false alarm—which is of interest when minimizing the
agent’s regret over random sequences of contexts. Our
method constructs a mixture model composed of a (possibly
infinite) ensemble of probabilistic dynamics predictors that
model the different modes of the distribution over underly-
ing latent MDPs.
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2. Problem Formulation
We define a non-stationary environment as a family
of MDPs {Mz}z∈N+ . Each MDP Mz is a tuple
(S,A, Tz,Rz, γ, d0), where S is a (possibly continuous)
state space, A is a (possibly continuous) action space,
Tz : S × A × S → [0, 1] is a transition function speci-
fying the distribution over next states, given the current state
and action,Rz : S×A → R is a reward function, γ ∈ [0, 1]
is the discount factor, and d0 is an initial state distribution.
In what follows, St, At, and Rt are the random variables
corresponding to the state, action, and reward at time step
t. We assume that the agent observes a random sequence
(M0,M1, . . .) of MDPs—called contexts—drawn indepen-
dently from some unknown distribution. We assume that the
number of contexts, |{Mz}|, is unknown. Let z be a latent
index variable indicating a particular MDP,Mz . We assume
that each MDP’s transition and reward function are param-
eterized by a latent vector θz . Let pθz (St+1, Rt|St, At)
denote the joint conditional probability distribution over
next-state and reward associated with MDPMz . We do not
impose any smoothness assumptions on how variations to
θz affect Tz and Rz: contexts may be arbitrarily different
and share no structural similarities.

Let the time steps in which context changes occur be an in-
creasing sequence of integer random variables, {Ci}i≥1, for
which a prior φ(Ci) is unknown or cannot be defined. We
call each Ci a change-point. At every change-point Ci, the
current contextMz is replaced by a new randomly drawn
MDP. To perform well, an agent must rapidly detect context
changes and deploy an appropriate policy. If a new random
context differs significantly from previously-experienced
ones, the agent may have to learn a policy from scratch; oth-
erwise, it may choose to reuse previously-acquired knowl-
edge to accelerate learning and avoid catastrophic forgetting.

3. High-Confidence Change-Point Detection
In the online CPD setting, a sequential detection proce-
dure is defined to rapidly and reliably estimate when the
parameter θ of some underlying distribution or stochastic
process has changed. Online CPD algorithms should pro-
duce high-confidence estimates, Γ, of the true change-point
time, C. Notice that Γ is a random variable whose stochas-
ticity results from the unknown stochastic prior over context
changes, φ, and from the fact that each MDP in {Mz}
produces random trajectories of states, actions, and rewards.

Suppose that at each time t, while the agent interacts
with M0, sample next-state and rewards are drawn from
pθ0(St+1, Rt|St, At), where θ0 is the latent vector parame-
terizing M0’s transition and reward functions. At some
unknown random change-point C, the context changes
to M1, and experiences that follow are drawn from

pθ1(St+1, Rt|St, At). We propose to identify such a change
by computing high-confidence statistics that reflect whether
θ0 has changed. This can be achieved by introducing a min-
imax formulation of the CPD problem, as discussed by (Pol-
lak, 1985). In this formulation, the goal is to minimize the
worst-case expected detection delay, ∆worst(Γ), associated
with the random estimates Γ produced by a particular CPD
algorithm (when considering all possible change-points C),
given that a bound on the maximum false alarm rate (FAR)
may be imposed. The worst-case expected detection delay,
∆worst(Γ), and the FAR, are defined as:

∆worst(Γ) = sup
c≥1

E[Γ− C|Γ ≥ C,C = c], (1)

FAR(Γ) =
1

E[Γ|C =∞]
, (2)

where the expectations in Eq. 1 and Eq. 2 are over the
possible histories of experiences produced by the stochastic
process, and where conditioning on C = ∞ indicates the
random event where the context never changes. Given these
definitions, the objective of a high-confidence change-point
detection process is the following:

inf
Γ

∆worst(Γ) subject to FAR(Γ) ≤ α, (3)

where α denotes the desired upper-bound on the false alarm
rate.

4. Model-Based RL Context Detection
In this section, we introduce an algorithm that iteratively ap-
plies a CUSUM-related procedure to detect context changes
under the assumptions discussed in Section 2. The algo-
rithm incrementally builds a library of models and policies
for tackling arbitrarily different types of contexts; i.e., con-
texts that may result from quantitatively and qualitatively
different underlying causes for non-stationarity—ranging
from unpredictable environmental changes (such as random
wind) to robot malfunctions. Our method can rapidly deploy
previously-constructed policies whenever contexts approx-
imately re-occur, or learn new decision-making strategies
whenever novel contexts, with no structural similarities with
respect to previously-observed ones, are first encountered.

We now introduce a high-level description of our method
(Model-Based RL Context Detection, or MBCD). As the
agent interacts with a non-stationary environment, context
changes are identified via a multivariate variant of CUSUM
(Healy, 1987), called MCUSUM. These statistics inherit the
same formal properties as those presented in Section 3. In
particular, they formally guarantee that MBCD can detect
context changes with minimum expected delay, while simul-
taneously bounding the false alarm rate. As a consequence,
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MBCD can effectively identify novel contexts while ensur-
ing, with high probability, that new context-specific policies
will only be constructed when necessary.

As new contexts are identified by this procedure, MBCD
updates a mixture model, M , composed of a (possibly infi-
nite) ensemble of probabilistic context dynamics predictors,
whose purpose is to model the different modes of the distri-
bution over underlying latent MDPs/contexts. New models
are added to the ensemble as qualitatively different contexts
are first encountered. The mixture model M associates,
with each identified contextMz , a learned joint distribu-
tion pθz over next-state dynamics and rewards associated.
Let K be the number of context models currently in the
mixture. After each agent experience, MBCD identifies the
most likely context, zt, by analyzing a set of incrementally-
estimated MCUSUM statistics. Whenever a novel context—
one with dynamics that are qualitatively different from those
previously-experienced—is observed, a new model is added
to the mixture. Context-specific policies, πψz

, are trained
via a Dyna-style approach (Sutton, 1990) based on the cor-
responding learned joint prediction model ofMz , pθz .

4.1. Online Context Change-Point Detection

In the particular case where the dynamics of each context
are modeled as multivariate Gaussians, the Log-Likelihood
Ratio (LLR) statistic can be computed as follows. To sim-
plify notation, let µ0 = µθ0(St, At) and Σ0 = Σθ0(St, At).
It is then possible to show that the LLR statistic, Lt, be-
tween distributions pθ1(Yt|Xt) and pθ0(Yt|Xt), is given
by:

Lt = log
(2π)−

d
2 |Σ1|−

1
2 exp{−0.5(Yt − µ1)Σ−1

1 (Yt − µ1)}
(2π)−

d
2 |Σ0|− 1

2 exp{−0.5(Yt − µ0)Σ−1
0 (Yt − µ0)}

(4)

where d is the dimensionality of the multivariate Gaussian.
At each time step t, MBCD uses Lt to compute MCUSUM
statistics Wk,t for each known context k:

Wk,t ← max

(
0,Wk,t−1 + log

pθk(Yt|Xt)

pθzt (Yt|Xt)

)
, ∀k ∈ [1,K].

(5)
Given updated statistics Wk,t and a decision threshold h,
the most likely current context, zt (which may or may not
have changed) can then be identified as:

zt ←
{

argmaxkWk,t, if ∃k ∈ [1,K] ∪ [new] s.t. Wk,t > h,

zt−1, otherwise.
(6)

If no alternative contexts are more likely to have generated
the observations collected up to time t, no context change is
detected and zt = zt−1.
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Figure 1. Evaluation of MBCD on the non-stationary Half-Cheetah
domain. Colored shaded areas represent different contexts: (blue)
default context; (red) joint malfunction; (yellow) wind; (green)
novel target velocity.

5. Experiments
We evaluate our method on the non-stationary Half-Cheetah
domain and compare it with two state-of-the-art RL algo-
rithms: MBPO (Janner et al., 2019) and SAC (Haarnoja
et al., 2018). In our setting, MBPO can be seen as a particu-
lar case of our algorithm, where a single dynamics model
and policy are tasked with optimizing behavior under chang-
ing contexts. SAC works similarly to MBPO but does not
perform Dyna-style planning steps using a learned model.

Fig. 1 shows the total reward achieved by different methods
(ours, MBPO, SAC) as contexts change. Colored shaded
areas depict different contexts, as discussed in the figure’s
caption. Notice that our method and MBPO have similar
performances when interacting for the first time with the
first three random contexts. In particular, both MBCD and
MBPO’s performances temporarily drop when a novel con-
text is encountered for the first time. MBCD’s performance
drops because it instantiates a new dynamics model for the
newly encountered context, while MBPO’s performance
drops because it undergoes negative transfer. SAC, which
is model-free, never manages to achieve reasonable perfor-
mance during the duration of each context, due to sample
inefficiency. However, as the agent encounters contexts with
structural similarities with respect to previously-encounters
ones (around time step 160k), MBCD’s performance be-
comes near-optimal: it rapidly identifies whenever a con-
text change has occurred and deploys an appropriate policy.
MBPO and SAC, on the other hand, suffer from negative
transfer due to learning average policies or dynamics mod-
els. They are also subject to catastrophic forgetting and do
not reuse previously-acquired, context-specific knowledge.

Next, we analyze how MBCD performs when compared
with state-of-the-art meta-learning methods specifically tai-
lored to deal with non-stationary environments: Gradient-
Based Adaptive Learner2 (GrBAL) (Nagabandi et al., 2019a)

2We used the authors’ implementation of the method,
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Figure 2. Performance of MBCD and meta-learning methods (af-
ter a pre-training phase) in the Half-Cheetah domain with non-
stationary malfunctions that disable random joints. Vertical dashed
lines indicate context changes.

and Recurrence-Based Adaptive Learner2 (ReBAL) (Naga-
bandi et al., 2019a). Fig. 2 compares the adaptation per-
formance of MBCD and the meta-learning methods in a
non-stationary setting where (inspired by (Nagabandi et al.,
2019a)) random joints of the Half-Cheetah robot are dis-
abled after every 100 time steps. In this experiment we
compare MBCD, ReBAL, GrBAL, and also (for fairness) a
variant of MBCD that chooses actions using MPC instead
of SAC. Although the meta-learning methods have lower-
variance, their meta-prior models do not perform as well
as the MBCD context-specific dynamics models and poli-
cies. We also observe that when MBCD uses parameterized
policies, learned through Dyna-style planning, it performs
better than MBCD coupled with MPC.

6. Conclusion
We introduced a model-based reinforcement learning al-
gorithm (MBCD) that learns efficiently in non-stationary
settings with continuous states and actions. It makes use
of high-confidence change-point detection statistics to de-
tect context changes with minimum delay, while bounding
the rate of false alarm. It is capable of optimizing poli-
cies online, without requiring a pre-training phase, even
when faced with streams of arbitrarily different contexts
drawn from unknown distributions. We empirically show
that it outperforms state-of-the-art (model-free and model-
based) RL algorithms, and that it outperforms state-of-the-
art meta-learning methods specially designed to deal with
non-stationarity
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