
Long Short-Term Memory with Slower Information Decay

Hsiang-Yun Sherry Chien 1 2 Javier S. Turek 3 Nicole M. Beckage 3 Vy A. Vo 3 Christopher Honey 1

Ted L. Willke 3

Abstract

Learning to process long-range dependencies has
been a challenge for recurrent neural networks.
Despite improvements achieved by long short-
term memory (LSTMs), its gating mechanism re-
sults in exponential decay of information, limiting
their capacity of capturing long-range dependen-
cies. In this work, we present a power law forget
gate, which instead has a slower rate of infor-
mation decay. We propose a power law-based
LSTM (pLSTM) based on the LSTM but with a
power law forget gate. We test empirically the
pLSTM on the copy task, sentiment classification,
and sequential MNIST, all with long-range de-
pendency tasks. The pLSTM solves these tasks
outperforming an LSTM, specially for long-range
dependencies. Further, the pLSTM learns sparser
and more robust representations.

1. Introduction
Recurrent neural networks (RNNs) are powerful models
for capturing the structure of sequence data; they store in-
formation from the past in internal hidden states and have
recurrent connections to allow these internal states to be
combined with input information. These internal repre-
sentations become “context” as described in Elman 1990.
Long Short-Term Memory networks (LSTMs, Hochreiter
& Schmidhuber 1997) have successfully improved RNNs’
performance by adding gates to the recurrent unit to control
the information flow, thus avoiding vanishing gradients and
enabling processing of longer contexts.

Recently, (Mahto et al., 2021) shows that information stored
in the memory cell in LSTMs decays exponentially, making
it difficult for LSTMs to learn information beyond a few

1Department of Psychological and Brain Sciences, Johns Hop-
kins University, Maryland, USA 2Work done while interning at
Intel Labs. 3Intel Labs, Hillsboro, Oregon, USA. Correspondence
to: Hsiang-Yun Sherry Chien <hsiangyun.chien@gmail.com>,
Javier S. Turek <javier.turek@intel.com>.

Proceedings of the LatinX in AI (LXAI) Research workshop at
ICML 2021. Copyright 2021 by the author(s).

hundreds of timesteps. (Tallec & Ollivier, 2018) proposes
the “chrono initialization” to initialize the forget gate bias
in an LSTM based on the prior knowledge of maximum
inter-dependency length between sequence elements, allow-
ing for retaining information longer in memory. However,
obtaining such prior knowledge is non-trivial and depen-
dent on both the data and task at hand (Mahto et al., 2021).
Gu et al. (2020) proposed a modified gating mechanism,
the refine gate, by implementing an adjustment function
to the original forget gate activation. An additional gating
parameter is added for the network to learn how to adjust the
activation curves according to different tasks. The refined
gate also has a uniform initialization modified from Tallec
& Ollivier (2018), which allows the network to capture a
wide range of temporal dependencies. Their refine gate also
decays at an exponential rate decay.

In this work, we propose a novel power law-based forget
gate, that improves the ability of the LSTM model to learn
long-range dependencies. This gating mechanism is de-
signed to combat the exponential decay of information by
enforcing the memory cell state to follow a power law in-
formation decay. Then, we enhance the LSTM network
with our power law-based forget gate, which is called power
law-gated LSTM (pLSTM). We test the pLSTM network
empirically, showing its long-range dependency learning ca-
pability without prior knowledge, and obtaining more robust
representations.

2. Information Decay in LSTM
Gated RNNs introduce a gating mechanism that controls
the flow of information and overcomes vanishing gradients
during backpropagation. A gate functions as a switch that
controls the amount of information that is allowed to pass
through it. LSTMs (Hochreiter & Schmidhuber, 1997) and
Gated Recurrent Units (GRU) (Cho et al., 2014) are exam-
ples of recurrent models that exploit gating mechanisms to
support the retention of information for longer inputs. In
particular, the LSTM defines an input gate it, a forget gate



Long Short-Term Memory with Slower Information Decay

ft, a cell state update gate c̃t, and an output gate ot:

ft = σ (Ufxt +Wfht−1 + bf )

it = σ (Uixt +Wiht−1 + bi)

ot = σ (Uoxt +Woht−1 + bo)

c̃t = tanh (Ucxt +Wcht−1 + bc)

ct = ft � ct−1 + it � c̃t (1)
ht = ot � tanh (ct) ,

where σ(·) is the sigmoid function, and � stands for the
Hadamard (element-wise) product. The hidden state ht
tracks the model dynamics and partially controls the acti-
vation of the gates, whereas the memory cell state ct stores
information.

Mahto et al. (2021) analyses LSTMs in a “free-input regime”
case where there is no external input to the network after
timestep t0, i.e., xt = 0 for t > t0. Information leakage
through the hidden state is also ignored, e.g.Wc = 0,Wf =
0, and bc = 0. The cell state update in Equation 1 becomes

ct = ft � ct−1 = c0 � elog(f0)(t−t0), (2)

where f0 = σ (bf ) and c0 is the cell state at timestep t0.
Equation 2 shows that the cell state follows an exponen-
tial decay with a log (f0) factor under such conditions.
Consequently, the forget gate bias term, bf , controls the
rate of decay. A high bias value bf would yield a slower
decay rate. This fact was previously observed by Tallec
& Ollivier (2018), who derived the “chrono initialization”
method, which enables LSTMs to learn to capture informa-
tion for longer sequences. A caveat of the chrono initializa-
tion method is that the maximum dependency range Tmax

should be known a priori.

3. A Power Law Gated LSTM
3.1. Slower Information Decay

The exponential decay due to the forget gate in Equation 2
poses a limitation to capturing information for long-term
dependencies. Instead, a power law function of the form
(t− t0 + 1)−p can grant us a slower information decay rate.
Therefore, we propose a forget gate based as follows:

ft =

(
t− t0 + 1

t− t0

)−p

, (3)

where t0 is a reference time point indicating the start of
information decay. Equation 3 is a recursive definition of
(t− t0 + 1)−p.

In general, when new information is to be captured by the
recurrent network at timestep t, the forget gate ft is expected
to be 0. Namely, we need to control the reference time t0 for
this objective, setting it equal to t. Thus, we define a new

variable kt that can be updated by the network as needed
to keep the reference time. We define the complete gating
mechanism for the power law-based forget gate by

ft =

(
t− kt + 1

t− kt

)−p

(4)

kt = rt � t+ (1− rt)� kt−1 (5)
rt = σ (Urxt +Wrht−1 + br) (6)
ct = ft � ct−1 + it � c̃t, (7)

where a reset gate rt controls when the reference time kt
should be updated based on the input and the recurrent in-
formation. Ur,Wr are its weight parameters, and br its bias
parameters. Specifically, when the reset gate is activated
rt → 1, the reference time kt would be reset to the current
time point t; otherwise, kt is kept as the prior reference time
kt−1 to allow information to decay. This recurrent defini-
tion of the variable kt adds to the cell memory of an LSTM.
Further, we propose to initialize it to k0 = 0 (as t ≥ 1).

Equation 4 has a recurrent coefficient that is smaller than 1
(due to the negative sign in the power), suggesting that any
positive power p > 0 is acceptable. However, the power
law decay is slower as p approaches 0, suggesting that long-
range dependencies would be better captured with small
values of p. Unlike its exponential counterpart, the power
law recurrence Equation 4 depends both on the timestep t
and the reference timestep kt. We consider the power p as
a learnable parameter. This allows each recurrent unit to
learn the best rate of decay. Given that the range (0, 1) is the
most useful for the power p, we compute p as p = σ(p̂), and
allow p̂ ∈ R to be any real value. Typically, we initialize p̂
such that p is uniformly distributed on the (0, 1) range.

In sum, we define the power law-gated LSTM (pLSTM) cell
based on the LSTM definition but with the forget gate ft
derived from Equations 4-7. We consider the input gate it to
be a separate gate as in the LSTM. However, in practice it is
possible to replace the input gate by it = 1−ft, which yields
∼ 3/4 of total parameters. The argument is that keeping and
removing previous information in the cell state ct should be
coupled (Van Der Westhuizen & Lasenby, 2018).

3.2. Backpropagating Through the Power Law Gate

The power law gate follows the same principles as the LSTM
gates, thus avoiding vanishing gradients during backprop-
agation through time. Nevertheless, we derive the gradi-
ent of the forget gate with respect to the reference time in
Equation 4 to investigate the effect when learning. The
term ∂ft/∂kt holds complex functionality of the gate and its
derivative is given by

∂ft
∂kt

= −p� (t− kt)p−1

(t− kt + 1)
p+1 . (8)



Long Short-Term Memory with Slower Information Decay

When the power p ∈ (0, 1), the partial derivative ∂ft/∂kt →
∞. This numerical instability makes the backpropagation
through time unstable. To overcome this, we add an ε term

in Equation 4 such that ft =
(

t−kt+1
t−kt+ε

)−p

. ε should be set
to a small value; in experiments reported here ε = 0.001.

4. Experimental Results
We tested the new power law forget gate incorporated into
an LSTM on several tasks that require retaining information
over long timescales. We compared the performance of the
power law LSTM (pLSTM) to a vanilla LSTM. All exper-
iments were implemented in Pytorch 1.7, used a learning
rate of 0.001 and optimized with Adam (β1 = 0.9, and
β2 = 0.999) unless otherwise specified.

4.1. Copy Task

We examine whether the power law forget gate in the
pLSTM results in a slower rate of information decay. We
compare the performance of LSTM, LSTM with chrono ini-
tialization (Tallec & Ollivier, 2018), and the pLSTM on the
copy task (Hochreiter & Schmidhuber, 1997). The copy task
was designed to examine the networks’ ability to memorize
information for an amount of time T . An input sequence
consists n = 10 “target” elements uniformly drawn from
m = 8 possible symbols: a0, . . . , am−1. Then, a “dummy”
symbol am is repeated for T timesteps. At position T +n, a
signal symbol am+1 is presented followed by n− 1 dummy
symbols. The output sequence consists on n + T dummy
symbols, followed by the n “target” elements from the input
sequence. A model must memorize the n target elements,
and, after keeping these in memory for T time steps, output
them in order after the signal symbol. In our experiments,
we examined the models’ ability to retain information over
T = 200, 500 and 1000 timesteps. The training dataset is
100K sequences, and the validation dataset 10K sequences.

For all the experiments, we set batch size to 128 and hidden
unit size to 128, following prior studies (Arjovsky et al.,
2016; Tallec & Ollivier, 2018). Optimization was performed
using RMSprop (Tieleman & Hinton, 2012) with a moving
average parameter of 0.9. We measure accuracy as the
proportion of successfully memorized elements out of the
10 target elements. The LSTM-chrono initializes the forget
gate bias with Tmax = 3T/2, following Tallec & Ollivier
(2018). Figure 1 shows validation accuracy over training
iterations for T = 1000. Similar results were obtained
for T = 200 and 500 (see supp. material). The pLSTM
was able to learn the copy task in all conditions. It also
converged faster than LSTM-chrono for T = 200 and 500.
This suggests that the power law gate helps pLSTM to retain
information over long-timescales, with no need for prior
knowledge of task demands to initialize the network.

Figure 1. Accuracy on copy task with T = 1000, the pLSTM
and LSTM-chrono both learned the task perfectly, with a similar
rate of convergence. LSTM failed to converge (not shown).

Figure 2. Unit ablation: Copy task accuracy (T = 200) when
5 units are ablated at a time (∼ 4% of total), for a total of 100
ablated units. The accuracy dropped more slowly in the pLSTM.
This indicates that the pLSTM uses a sparse, local representation
over relatively few units to solve the task. Moreover, when ablating
the critical later-reset units first, the performance dropped faster.

Further, we tested model robustness by measuring the model
performance after random unit ablation. We randomly sam-
ple 100 of the 128 units and ablated 5 units at a time. Figure
2 depicts the performance on the ablation study. When ran-
domly ablating units in the network, the pLSTM (green)
showed slower decay of task performance compared to
LSTM (blue) and LSTM-chrono (orange) in T = 200 (See
supp material for T = 500). The results showed that the
pLSTM is more robust to unit ablation. Furthermore, LSTM
and LSTM-chrono initialization lead to a distributed rep-
resentation for solving the task and thus is fragile to abla-
tion. Additionally, we examine whether ablating “later-reset
units” first (red; units that reset only after signal symbol is
seen) decrease the performance. Results show that these
units are particularly important for the pLSTM performance
than other units, suggesting that pLSTM learns a sparser
and robust representation.

4.2. Sequential MNIST

Next, we examine the performance of the pLSTM on the
sequential MNIST classification task and the permuted se-



Long Short-Term Memory with Slower Information Decay

Table 1. Test accuracy for pixel-by-pixel digit classification. Aver-
age results for successfully trained models over 3 random seeds.

METHOD MNIST PMNIST

LSTM 256 (OURS) 98.7% 91.3%
LSTM 512 (OURS) 98.6% 91.7%
PLSTM 256 99.1% 94.4%
PLSTM 512 99.1% 95.6%

quential MNIST (pMNIST) (Le et al., 2015). In this task, a
digit image is converted to a 784-length sequence of pixels
by reading it row after row from top to bottom. In pMNIST,
the element order in the sequences is permuted. We partition
the MNIST training set into 50K sequences for training and
10K for validation. The test set contains 10K sequences.

We evaluated the LSTM and pLSTM architectures with hid-
den sizes of 256 and 512 units. As noted by Gu et al. (2020),
training LSTMs with more hidden units can be unstable
and the model failed to converge with some seeds. We re-
port, on three successful seeds, the average performance of
the models in Table 1. The results show that the pLSTM
captures long-range information better than the LSTM and
other recurrent architectures. Unlike the LSTM, the pLSTM
was able to successfully train every run.

4.3. Sentiment Classification

We also looked at the performance of the pLSTM on a
sentiment classification task. In the IMDB dataset, each
of 50k reviews are classified as either positive or negative
(Maas et al., 2011), with 25k reviews in the training set. We
pad or truncate the reviews to a fixed length of 400 words,
and set aside a random 10% of the training set for validation.
We train for 20 epochs and select the epoch with the lowest
validation loss as our model. Following previous work, we
used a 100d pretrained GLoVe embedding with a dictionary
size of 25K (Rusch & Mishra, 2020). We test single layer
LSTM, LSTM-chrono, and pLSTM, matching the number
of parameters (∼118K parameters; 128 units for the LSTM
and LSTM-chrono, 154 units for pLSTM; dropout rate 0.2).
The learning rate was optimized separately via grid search
(LSTM, LSTM-chrono: 0.001; pLSTM: 0.0005). We report
results on the test set averaged across 3 random seeds.

The pLSTM achieved a higher accuracy (.881) over the
LSTM (.868) and LSTM-chrono (.870). Further analysis
showed that the pLSTM selectively improves performance
for longer sequence lengths (Figure 3 in supp. material).

5. Conclusion
In this work, we proposed a novel gating mechanism, the
power law forget gate. We implemented it in an LSTM,

called pLSTM. The new forget gate effectively results in
the decay of cell state information via a power law function.
This type of slow decay allows the network to learn long-
range information over hundreds of timesteps. We empiri-
cally tested the performance of the pLSTM tasks requiring
long-range dependencies. We showed that the pLSTM can
effectively capture information over a wide range of dis-
tances. Further analyses showed that the pLSTM learned
to perform the copy task using only a small subset of units,
making the model more robust.

References
Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution

recurrent neural networks. In ICML, 2016.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder–decoder for
statistical machine translation. In EMNLP, 2014.

Elman, J. L. Finding structure in time. Cognitive science,
14(2):179–211, 1990.

Gu, A., Gulcehre, C., Paine, T., Hoffman, M., and Pascanu,
R. Improving the gating mechanism of recurrent neural
networks. In ICML, 2020.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–80, 1997.

Le, Q. V., Jaitly, N., and Hinton, G. E. A simple way
to initialize recurrent networks of rectified linear units.
arXiv preprint arXiv:1504.00941, 2015.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. Learning word vectors for sentiment analy-
sis. In ACL, 2011.

Mahto, S., Vo, V. A., Turek, J. S., and Huth, A. G. Multi-
timescale representation learning in LSTM language mod-
els. In ICLR, 2021.

Rusch, T. K. and Mishra, S. Coupled oscillatory recurrent
neural network (coRNN): An accurate and (gradient) sta-
ble architecture for learning long time dependencies. In
ICLR 2021, 2020.

Tallec, C. and Ollivier, Y. Can recurrent neural networks
warp time? In ICLR, 2018.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
Coursera: Neural networks for machine learning, 2012.

Van Der Westhuizen, J. and Lasenby, J. The unreasonable
effectiveness of the forget gate. arXiv:1804.04849, 2018.


